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Stability Analysis of a Dense Hard-Sphere Fluid Subjected to Large
Shear Shear-Induced Ordering
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The stability at finite wave numbers of a hard-sphere fluid subjected to a large shear is examined
by use of hard-sphere kinetic theory, For a fixed density, for molecular-scale wave numbers, and
for a critical shear rate the fluid is found to become unstable with respect to density waves in the
direction of the velocity gradient. The critical shear rates obtained are close to those found by Er-
penbeck in his nonequilibrium molecular-dynamics simulations of shear-induced ordering.
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In recent years nonequilibrium molecular-dynamics
(NEMD) techniques have been used to study the
properties of simple fluids under steady shear. ' ' Typ-
ically, the shear rates in these computer simulations
are orders of magnitude larger than those obtainable in

real laboratory situations. Nevertheless, there has
been considerable interest in these computer experi-
ments since the dependence of the shear viscosity q on
the shear rate ~ is very similar to that obtained experi-
mentally for supercooled molecular liquids under real-
istic shear. Early computer simulations measured
q(i. ) and the nonequilibrium contributions to the nor-
mal stresses.

In a recent Letter, Erpenbeck6 used NEMD to show
that for a large enough shear rate a three-dimensional
hard-sphere fluid underwent a phase transition. In
particular, Erpenbeck found that if the fluid fiow is
planar Couette flow and is given by u =xe5 ~ (u
=x,y, z), then for a fixed density of hard spheres there
is a critical shear rate where a phase transition to a
two-dimensional ordered state occurred. Snapshots of
the particles indicated that in the ordered state the po-

sitions of the particles in the x and z directions were ar-
ranged on what appears to be a two-dimensional tri-
angular lattice. We note that the phase transition oc-
curs when the variation in the flow field is comparable
to a molecular diameter. Finally, we stress that the
density of particles is less than the equilibrium freez-
ing density for hard-sphere fluids.

Physically, one expects Erpenbeck's transition to be
almost continuous since a tendency for fluid layering is
present for any ~. Motivated by this, we have per-
formed a linear stability analysis of a hard-sphere fluid
undergoing planar Couette flow. For a fixed density
we find that at a critical shear rate i„ the fluid be-
comes unstable with respect to a density wave in the x
direction. Our value for ~, is quite close to the value
obtained by Erpenbeck6 for the critical shear rate
where the fluid freezes into a two-dimensional ordered
solid. %e tentatively conclude that they are related.

Our analysis is complicated compared to usual stabil-
ity analysis for several reasons. First, the shear rates
are not small. As a consequence of this one cannot
simply keep terms linear in the shear rate. Second, the
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critical wave-number regime is not at small wave
numbers but at intermediate wave numbers near
~here the equilibrium static structure factor has its
maximum. Physically this is obvious since the order-
ing takes place on a molecular scale. Because of this
one cannot use the hydrodynamic equations but in-
stead one must use either generalized' (to finite wave
number) hydrodynamic equations or kinetic theory.
In our analysis we used hard-sphere kinetic theory.
Ho~ever, in order to make our calculations accessible
to a larger audience we will relate our kinetic-theory
analysis to a generalized nonequilibrium hydrody-
namic-equations approach. The kinetic theory will be
used to obtain, approximately, the generalized thermo-
dynamic and transport coefficients to be used in these
equations. We believe that this is the first time that a
generalized nonequilibrium hydrodynamics has been
derived and used for a stability analysis far from equili-

brium.
The basic idea used here is that already in thermal

equilibrium, density fluctuations are very slowly de-
caying near wave numbers where the static structure
factor S(k), with k the wave number, has its first
maximum. These slowly decaying intermediate—
length-scale density fluctuations have been discussed
in detail elsewhere. " ' Here we examine the possibil-
ity that because of the shear rate this already small re-
laxation rate vanishes. Our starting equation is the re-
vised Enskog equation (RET) for hard-sphere
fluids. '4 At the densities Erpenbeck considers, this
kinetic equation is known" to do an excellent job of
describing equilibrium density fluctuations near k
= ko, where 5 (k ) has its maximum. Here we assume
that the RET also correctly describes density fluctua-
tions near ko in the presence of shear. %e note that
by this approximation we neglect mode-coupling ef-
fects. The RET is given by

[8, + vt 8/Br&]f(l, t) = JI d2 T (12)g(r~, r2t) f(l, t)f(2, t),
where f(l, t ) (1=r&, vt) is the one-particle distribution function at position r~ and velocity v& at time t. g (rt, r2, t)
is the pair-distribution function for an inhomogeneous equilibrium fluid at number density n (r&, t ) = Jd v& f(l, t ).
T (12) in Eq. (1) is a hard-sphere collision operator that is given elsewhere and which takes into account the
difference in position between two colliding particles. Finally, we remark that it can be easily shown that the RET
in equilibrium reduces to the density functional theories" used in modern treatments of equilibrium freezing.

To perform the stability analysis we first linearize Eq. (1) about the average state of the fluid described macro-
scopically by a uniform number density no, a flow velocity given by u (x) =x~S ~, and a uniform and constant
temperature T (we neglect viscous heating). The microscopic state of the fluid is described by the steady-state (ss)
distribution function f„. When we write f(l, t) =f„(l)+Sf(l,t), the fluctuation Sf(l, t) in the distribution
function satisfies the equation

[8, +v& 8/ }r~]ifS(l, t)=g(cr) d2T (12)(1+P»)f„(2)Sf(l,t)
+ d2 d r3 T (12)f„(1)f„(2)H(rtr2ir3)Sn(r3, t), (2)

where g (o.) is the radial distribution function at contact, with cr the hard sphere diameter and

H(rtrz ir3) = [Sg (rt, r2, t )/Sn (r3, t ) ],q (3)

is the functional derivative of g(rt, rz, t) evaluated in a uniform or equilibrium fluid of density no Hin E.q. (3)
can be expressed in terms of equililbrium two- and three-point correlation functions. f„ in Eq. (2) satisfies a
steady-state nonlinear Enskog equation. Equation (2) is the starting equation in our linear stability analysis.

Rather than examining the stability properties of Eq. (2) directly, it is sufficient to examine velocity moments of
Sf(1,t ). In particular, the density fluctuations,

Sn (rt, t ) = Jtd'u, Sf(l, t ), (4)

will play an essential role in our analysis. Also important are velocity fluctuations hu, given by

n (r, , t ) [u (xi) + Su (ri, t ) ] —nou (x, ) = ~I d'u, u, Sf(l, t ). (5)

Elsewhere'3 one of us showed that in thermal equilibrium, density fluctuations in a dense hard-sphere fluid at
wave numbers Ilear kp were well described by what is effectively a moment solution of Eq. (2) retaining only the
four moments of Sf given by Eqs. (4) and (5).' Our detailed calculations suggest that this is also true in the non-
equilibrium steady state considered here. %ith this approximation, closed hydrodynamiclike equations for hn and
Su can be easily derived. By a Fourier-Laplace (with variable z) transform of these equations we have obtained

zSn(kz) 'k, eSn(-kz)/ek„+n, tkSu, (kz) =Sn(k, o), (6a)
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zSu (k,z) —«k» 5u {k,z)+5»«Su„(k, z)

ik Sn(k, z)
=au (k. 0) — —( „(k.i)bn(k z) —I', (k, i)ku(kz) —gI', (k. i)ku, (k z).

Here we have introduced a set of three orthonormal
unit vectors, (k, k,', k', ), with k=k/~k~ a unit vector
in the direction of k; Sut(k, z) =k Su {k,z) is the
longitudinal velocity and Su, (k,z) =k'~ Su (k,z) are

the transverse velocities. Here summation convention
has been used. The k-derivative terms in Eqs. (6)
arise from the convective terms ( —u '7) in the hy-

drodynamic equations in real space, In these equations
p= (kaT) ', with ka Boltzmann's constant, m is the
mass of the particles, S(k) is the equilibrium static
structure factor, and Sn(k, 0) and Su (k, 0) are
initial-condition terms. The I"s in Eq. (6b) are in the
literature" '3 for a hard-sphere fluid in equilibrium
and their explicit form for the nonequilibrium steady
state considered here will be given elsewhere. They
are obtained from the moment solution of Eq. (2).
Here we restrict ourselves to terms of 0 («) and we
will discuss the validity of the approximation below.
To determine approximate expressions for the I"s we
first have solved the ss Enskog equation for f„ to
0 («). It is then straightforward to establish that the
I"s depend on equilibrium two- and three-point corre-
lation functions, the dimensionless wave number ko. ,
the reduced density no+, and the reduced shear rate
«to, with to the Boltzmann mean free time between

collisions in a hard-sphere fluid. " Here we note that
the leading terms in an «expansion of the I"s follow
from general considerations. That is, I „—0(«),
k.r., =r„—o("), k',.r., =r, , —o("), r, ,—0(«) —I t... I, , (i' ) —0(«). These estimates
will be used below.

Before solving Eqs. (6) we make some further sim-
plifications. We are interested in examining the decay
of density waves and we separately consider
5n (k = k„x,z ) = 5n„(k„,z ), 5n» ( k», z ), and 5n, (k„z ) .
We first note that it is physically obvious, and easily
confirmed by calculation, that Sn, depends only weakly
on «and we therefore concentrate on Sn„and Sn»
Examining Eqs. (6) we see that there is a fundamental
difference between Sn„and Sn». The equations for
Sn» contain a differential operator in k space, while the
equations for Sn„do not. As a consequence of this it
is not too hard to show that Sn»(k», t) always decays
faster than Sn„(k„,t). Therefore we consider here
only Sn„(k„,z). This is an important simplification
since for k= (k„, Q, Q) Eqs. (6) reduce to algebraic
equations. For these values of k and the estimates for
I given above, Eqs. (6) can be easily solved to 0(«').
For long times, or z Q, and ~k„~ —ko, Sn„(k„,z)
satisfies the equation

[z+(0(k„,«)15n„(k„,z) = Sn (k„,0),

with

k„A (k„,«)

PmS(lk„l)r„(k„, «)a(k„, «)

~here

(7a)

(7b)

i pmnoS (~k„() i pmn, S ( (k„)) rt(, {k((.«)r(, (I (kx, «)
(7c)

I'„(k„,«) [«k' k„+I, , (k„, «) 1

a(k„, «) = I—
I (, (k„,«)I, , (k„, «)

+ 0 («').

Here we have set Su (k„,0) = 0 for convenience. Equations (7) represent our final results. From symmetry argu-
ments it follows that the terms in Eqs. (7c) and 7(d) (except for the I) are of 0(«) and that they are correct to
0(«). For «0, Eqs. (7a) and (7b) give the slowly decaying intermediate —length-scale (~k„~ —ko) equilibrium
density mode discussed in detail elsewhere. " ' We also note that Sn„(k„,z) becomes critical if so(k„, «), or
A (k„,«) vanishes for any k„and «at a fixed density.

Using our explicit results for the I s we find that this happens in a region ~here we believe that our theory is
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qualitatively accurate. In calculating the I"s we have
used the Verlet-Weiss —corrected Percus- Yevick
representation' for S(k) and the Kirkwood superpo-
sition approximation for the three-point equilibrium
correlation functions that appear. The contributions
from the terms involving three-point correlation func-
tions turn out to be small and so we do not believe
that the use of the Kirkwood superposition approxima-
tion is an important approximation in our theory. For
nrr3 = 0.88, we find that A (k„,e) vanishes at

i k i
a. ——6.7, and a critical shear rate (e ro), =~;= 0.33.

Here to is the Boltzmann mean free time between col-
lisions for hard-sphere particles. At this density Er-
penbeck6 observes a phase transition at e"= 0.4. For
n a.3 ——0.704, we find that A ( k„,~ ) vanishes at
ik„ia. ——6.4 and a critical shear rate (pro), = e,"=0.61.
Erpenbeck6 observes a transition at e"= 0.8, although
the transition region is very broad at this density. We
note that both our critical shear rates and the scale
where density fluctuations become unstable are quite
reasonable.

We conclude by discussing our results and the ap-
proximations we have used.

(1) In our calculations we have neglected viscous
heating effects. Furthermore„ in Erpenbeck's simula-
tions viscous heating is prevented by a velocity-
rescaling technique. The effects of this velocity rescal-
ing are not included in our starting kinetic equation.
We remark that viscous-heating terms first appear in

the problem in the unperturbed distribution function
as contributions of O(e ). However, for symmetry
reasons we can show that these terms do not con-
tribute to the quantity A in Eq. (7b). If the same were
to be true for the effects of velocity rescaling then we
could conclude that with regard to this point our calcu-
lation of A is correct to 0 (e ).

(2) In our calculation of A (k„,e) we have retained
only terms of O(e') and neglected those of O(e ).
We remark that to O(e') by far the largest contribu-
tion comes from the local equilibrium contribution to
f„. Furthermore, we note that if we replace f„by its
local equilibrium contribution then there are no contri-
butions to A (k„,e) from I',„[which is the largest con-
tribution of O(e )] of O(~ ). This suggests that the
O(e ) terms are all small. Preliminary calculations
also suggest this. Technically the terms of O(e ) al-
ways involve very complicated angular factors that in-
tegrate to small numerical coefficients.

(3) We note that the instability discussed above for
5n„(k„,r) is independent of the convective terms in
the generalized hydrodynamic equation since they van-
ish for k = (k„,0, 0). In our calculations we can identi-
fy two effects that are due to the shear and which
cause the instability. First, the normal stresses in the
fluid are modified to O(e ) and they contribute to
terms of this order in A (k„,e). Second, the density

and shear-rate dependence of the generalized (to finite
k) transport coefficients also leads to terms of O(e )
in A (k„,e). In our calculations the latter terms are
much larger than the former terms.

Finally, we point out that we have not attempted to
describe the ordered state in this Letter.

The authors are indebted to E. G. D. Cohen for
hei. pful discussion. This work was supported through
National Science Foundation Grants No. DMR 83-
09449 and No. DMR 82-05356, and by a grant from
Standard Oil Company of Ohio.

Note added. —After this paper was submitted we re-
ceived a preprint by D. J. Evans and G. P. Morriss.
These authors have used NEMI3 to show that a two-
dimensional soft-sphere fluid under large shear is ex-
tremely sensitive to the type of thermostatting used.
For what they consider an unbiased thermostat they
find that the fluid becomes turbulent at a critical shear
rate. Our results cannot distinguish between the
development of an ordered state or a turbulent state
since we perform only a linear stability analysis.
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