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Cooperative-Ring-Exchange Theory of the Fractional Quantized Hall Effect
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A semiclassical path-integral approach is used to calculate the contribution of large-correlated-
ring exchanges to the energy of a two-dimensional signer crystal in a strong magnetic field. This
correlation energy E, (v ) shows cusps at fractional fillings v, = n/m of the lowest Landau level. The
uniform signer crystal is locally unstable for ~&v, and the theory predicts the existence of frac-
tionally charged quasiparticles to accommodate the extra density v —v, .

PACS numbers: 71.45.6m, 73.40.Lq

Recent experiments on the low-temperature, large-
magnetic-field (Bo) conductivity of high-mobility
electron layers' provide evidence of the existence of a
family of novel condensed phases of the two-
dimensional (2D) electron gas at "special" rational
values of the dimensionless density u, where u is the
mean number of electrons in the area 2n i02 =$0/Bo
covered by one flux quantum $0= he/e. Specifically,
(1) the anomalously small value of o suggests2 that
there is a gap in the spectrum of current-carrying
states, and hence a cusp in the correlation energy
E,(v) at the special values of u; (2) the fractional
quantization of tr~ may be evidence3 of the existence
of fractionally charged quasiparticles. We have studied
this system in the absence of impurities, in the
high-magnetic-field limit where the spacing tot,
= etBO/m'c between Landau levels as well as the Zee-
man energy pttgBp are much larger than the Coulomb
repulsion between electrons —Vo= e /elo, where e is
the dielectric constant. Thus, for v & I, we assume
that only spin-up electrons in the lowest Landau level
(LLL) need be considered. Since the noninteracting
system is highly degenerate, correlation effects are
clearly very important.

Attempts to describe this system as a Wigner crystal
(WC), which is the correct ground state for low densi-
ties, have been hampered by the fact that such descrip-
tions give no evidence of cusps in the energy. s Maki
and Zotos5 used an Ansatz WC wave function, includ-
ing Gaussian quantum fluctuations, and found densi-
ties v=1/m (m odd) favored, but only extremely
weakly as a result of the small overlap between neigh-
boring sites. Laughlin3 proposed a Jastrow-type trial
wave function which innovatively treated pairwise
electronic correlations. He found fractionally charged
excitations (q=e/m) above the v=1/m (m odd)
ground state. At intermediate densities, Laughlin's
wave function describes a liquid state with lower ener-
gy than that of the WC. Numerical studies on small
numbers of electrons give support for such a state. 6

Recently, Chui, Hakim, and Ma proposed a solidlike
trial wave function, which they find to have a lower
energy than that of Laughlin.

We have studied this problem, also beginning from
a WC state, but using a systematic, semiclassical ap-
proximation. Our results may be summarized as
follows. We find exchange effects in which L elec-
trons in a ring coherently rotate to an equivalent
configuration leading to contributions to E,(v) which
can be orders of magnitude larger than pair-exchange
contributions because of the reduced tunneling barrier.
In addition, these contributions exhibit nonanalytic
cusplike behavior for certain rational values of v. '0

Rings with large L play a dominant role for two
reasons. Firstly, although the contribution from any
single ring decreases exponentially with L, there are a
very large number of rings with large L ( —EL where
E is the connectivity). Secondly, they can make a
nonanalytic contribution to E, (u) as a result of in-
terference between different exchange rings. The con-
tribution from each ring contains a phase factor 0= 2sr
x BoA (u)/po (Bohm-Aharonov effect), where A (v)
is the enclosed area. For arbitrary v, the contributions
from large rings add incoherently. However, because
A (v) is always approximately equal to an integer mul-
tiple of the area per elementary plaquette of the WC,
for certain rational densities u, the different rings add
in phase. It is this effect which makes these densities
energetically favorable and which leads to cusps in
E, (v) at v = v, when arbitrarily large rings are includ-
ed.

Our model derives from a LLL path-integral

representation for the partition function Z = Tre
—PH~

with

N eHz= X, p, + Bzixrt + X V2(r& r„). —
t-i 2m, 2c, 3&k

The single-particle Hamiltonian admits a continuous
representation for LLL eigenstates, @R(r)= (r~R):

(r~R) = (2sr) 'i2exp{ ——,
' (r —R)2+ —,

' i(rx R) i}

with Ht (R) = —,'&to, IR) and where we set io—= 1. The
resolution of the LLL projection operator, Po
=(I/2') fd'~IR) &RI, may be used to develop a
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path-integral expression" for Z:

Z(.)=, X ( —»' d .([r,]~e '"'~[r„„]),

where N = v Bp/@p and ~ Ir;]) —= ~ri. . . rz) . This yields

Z(v)= & X ( —1) eR (T)e
PCS~ j=1

where ~&is a normalization constant and the boundary
conditions require RJ(0)=Rpi, i(p}. The action for
continuous paths is

~p N

S[R]=—,
' d~ —i X (R, &&R ) z

j=l

+ X V(RJ —Rk),

iX, =aV, /eY, , i,Y=-a /Var. , (4)

where VJ—= g», V(R; —R, ). These are simply the
imaginary-time EXB drift equations. To find solu-
tions to Eq. (4) which satisfy the boundary conditions
RJ(0) =R~~j&(p), we analytically continue the path
integral to complex values of X& and Y, .

'
The path with the smallest action is the triangular

WC. This path with pairwise exchange and Gaussian
(phonon) fluctuations about it makes the leading-
order contribution to Z, Zp=Dpe =exP[ —P
x imp(v) ], where Ep is the energy per site of the stat-
ic WC as computed by Maki and Zotos. 5 Ep(v) is a
smooth, monotonic function of v for v & —, . Since the
shear modulus is negative for v ) v+ ——0.45, 5 we re-
strict our analysis to v & v+. (For v ) 1 —v+, the
same considerations apply to the hole lattice. ) So as
not to have prohibitively large action, the important
classical paths must resemble the WC at most points in
space and time. Therefore, we consider only classical
paths whose initial configuration is the static WC. In

where V is the matrix element of the Coulomb poten-
tial between coherent states, V(R) = —,

' v~7r (e2/e )
x exp( ——,

' R2)lp( —,
' R2). We will refer to the integra-

tion variable 7 as the (imaginary) time.
The partition function Z is evaluated within the

semiclassical approximation. This entails the finding
of all paths R'(~) which extremize the action [R' is a
vector function with 2%components R&(r) ] and then
the inclusion of quantum fluctuations by expansion of
the action to second order in R —R'. In this way Z
can be expressed as a sum over classical paths,

Z=X D[R ]e 'l"'l-
where D[R'] is the fluctuation determinant. The ex-
tremal (classical) paths satisfy the equations of motion

addition, as discussed earlier, we focus on those paths
which are most likely to lead to structure in E, (v) be-
cause of their systematic dependence on v; that is, we
consider paths, such as those illustrated in Fig. 1„
which consist of a cyclic, coherent superposition of
nearest-neighbor exchanges.

For convenience, we factor out the leading-order
contribution that is common to all classical paths by
writing Eq. (3) as

Z=Z, X, Z, =Z, X, D[R,]e, (5)

where D = D/Dp and S = S —Sp. Let us consider the
contribution of a single large exchange ring to Z. The
real part of the classical action is approximately propor-
tional to the number of electrons in the ring L and the
imaginary part is 8= +2m($/Qp) +m(L —1), where

@ is the enclosed fiux, the + refers to positive or neg-
ative sense of rotation, and the term n (L —1) reflects
the Fermi statistics. If the classical path exactly fol-
lowed the straight-line segments between sites (as
shown in Fig. 1) then 8 = + 7r (v ' —1)N&

+m(mod2m), where N„ is the number of enclosed
plaquettes of area 7r!p2/v, and we have used the fact
that N„ is even (odd) when L is even (odd). Similar-

ly, the real part of the action would be up(v)L, where

np is independent of path. "We have argued that the
net effect of deviations from such linear paths is to re-
normalize up. The fluctuation determinant is

D[R,]= —rp 'dr exp[ —bnL +O(lnL)], where Tp

is the cooperative tunneling time. '4 Therefore, we ap-
proximate the contribution of a large-ring exchange as

AZ, (v) = rp
' dr exp[ —n(v)L+ihN„+ O(lnL) ],

where n=ap+hu and h=7r(v ' —1).
Whether or not large-ring exchanges contribute sig-

nificantly to Z(v) is determined by the numerical
value of n(v) We ha. ve estimated n(v) for the sim-
ple case in which a single line of electrons exchange,

FKJ. 1. Examples of exchange paths and their representa-
tion in terms of a configuration of the dual lattice.
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so that X (P) =XJ(0)+a„, YJ(P) = YJ(0), where a„
= (4m/ 3v)'i2 is the lattice constant of the WC. We
assume that only the electrons in this one line move in
the background of the static potential of all other elec-
trons. Thus we overestimate a; however, we believe
that the relaxation corrections are small. We find that
the extremal path corresponds to rigid motion of the
line [R&(7)—RJ(0) =R(~) for jon the line] and that
a( —,

' ) —0.81 (as a function of the density, n is ap-

proximately proportional to 1/v). As we shall see, this
indicates that large-ring exchanges are important at
densities of experimental interest.

A general path in Eq. (5) contains many exchange
rings and for small n, they are sufficiently dense that
the exchange events do not form a dilute gas. There-
fore, we include what we believe to be the most im-
portant interactions between exchange events that
overlap in space and time. The time interval P is di-
vided into slices of width 7p and, because the classical
paths are exponentially localized in time, we ignore in-
teractions between exchange events which occur in

different time slices; i.e., Z, = [Z„;„] ', where Z„;„
is the trace over all exchanges in a given time slice.
The exchange paths in a given time slice are enumerat-
ed in terms of integer-valued spin variables S„; Sz is
defined to be the number of clockwise minus the
number of counterclockwise exchange rings that encir-
cle the plaquette &. Hence, )i. labels a site on the dual
(honeycomb) lattice. We associate with each spin con-
figuration an energy

Hoo=a X (Si, —S~)2+ih XSg, (6)

where (X, y) denotes nearest-neighbor sites. Then
we make the approximation Z,i;„=Trexp( —Hoo)
which is exact for all configurations of isolated rings
and includes a repulsion between rings that share one
or more nearest-neighbor bonds. Equation (6) is the
Hamiltonian of the discrete Gaussian (DG) model in
an imaginary field, where n ' plays the role of tem-
perature. This model is known to have a phase transi-
tion at a critical value of n=n, (h). '5 For h =2m m

[v =1/(2m+1)], n, takes on its maximum value,
which we estimate to be n, ——1.1. For n(v) )a„ the
system behaves like a classical WC, while for
~(v) & n„ the system is highly quantum mechanical
and arbitrarily large exchange rings dominate the
behavior of the system.

To study the n ( n, phase it is useful to exploit the
exact equivalence of the DG model and the Coulomb
gas (CG) '5'

2m2 h h
Hco X A

A
1

where G&„—In~R„—R~~ is the (honeycomb) lattice
Green's function and qi, is an integer charge. The

small-o. phase can be analyzed by a study of the
ground-state properties of the CG. The h = 2n m

ground state of Hco has qz= m and zero energy. The
ground state for

~
h —2~m

~

=—5h (& 2m has a fraction
5h/2n of sites with charge 1 —5h/27r, which them-
selves form a Wigner lattice. The remaining sites have
charge —5h/2n. Thus the free energy Fco of the CG
at small ~ is proportional to ~5h ~in~2m/5h~, which for
our problem implies E, (v ) —(5v I ln I5v I for I5v I

&( 1/(2m + 1). Since 8E,/Bv diverges as 5v 0, the
uniform WC state is thermodynamically unstable in
the open neighborhood of v = 1/(2m + 1). This
motivates the need for quasiparticles discussed below.

From studies of Josephson junction arrays in a
transverse field, '6 Fco is believed to have cusps of the
form ~5h~ln~2~/5h~ at all rational h/2~ for e(v)(~, (h(v)). '~ From our estimate of a(v) and from
Monte Carlo calculations of Shih and Stroud, '6 we find
that this inequality is most likely to be satisfied by
v = —, , —, , —,, —, , —, , —, , and —,, although some of thesel 2 2 ] 3 4

phases may be unstable with respect to competing
phases. '8 Since the v= —,

' uniform-density state is
much more stable than any other special density, one
might also consider a hierarchy of states formed by
starting with a WC of quasiparticles and repeating our
analysis for ring exchange of quasiparticles with frac-
tional charge and fractional statistics. '9 2p In this case,
one obtains a sequence of stable densities in agree-
ment with previous hierarchical analyses. 2P 2' We will

discuss the relative stability of these states elsewhere. s

Our model is thus incompressible since it is rigid
with respect to uniform dilations. However, there are
quasiparticle (qp) excitations of charge 0' which cor-
respond to local dilations of the Wigner crystal by an
amount 5A. As a result of the deformation of the lat-

tice, all rings that enclose the qp acquire an extra phase
58 = 2nBp5A/'$p relative to those that do not. One
can see immediately from the CG representation that
this will cost a logarithmically divergent energy unless
58 = 2m x integer, and hence the elementary excita-
tions have charge Q" = +ve. We have constructed an
approximate qp with a core size —lp and estimate its
creation energy E~(v) —0.5v e /alp. When v is near
a favored density v„ the system can reduce its energy
by forming a nonuniform state with density (averaged
over a plaquette) equal to v, everywhere except in the
core of the qp. The cusps in the energy are thus
E(v) —v, 'Iv —v, lE~(v, ) for v near v, . (We have
not evaluated the creation energies with sufficient ac-
curacy to distinguish between quasiparticle and
quasihole energies. )

Of great interest is the magnetophonon (mp) spec-
trum. In the sparse-ring phase, the mp dispersion
resembles the standard &ok

—k3i2 form. 5 In the
dense-ring phase, however, nonlinear interactions
between density fluctuations strongly alter the mp
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spectrum. 8 This effect and the issue of dissipation are
presently under consideration.

We conclude with some brief comments on the con-
sistency of our approach. In the small-a phase, the gas
of exchange loops is quite dense. Hence, the time-
slice path decomposition is not well defined. Howev-
er, the major role of the time-slice approximation is
only to provide an ultraviolet cutoff corresponding to a
repulsion between overlapping exchange loops. One
particular feature of the dense-ring phase is the prolif-
eration of intersecting rings in the dual spin model.
Some of these configurations correspond to high-
action paths in real space (e.g. , crossings), and should
be discouraged by the inclusion of additional short-
ranged spin-spin interactions. 22 We expect that such
terms should lead to a renormalization of n, and that
they will not change the universality class of the spin
model.

An interesting open question concerns the existence
of long-ranged charge-density-wave (CDW) order. At
finite temperature, the magnetophonons will destroy
any long-ranged order. At zero temperature, none of
the terms that we have computed explicitly destroy the
CDW. However, we have yet to establish fully wheth-
er or not such order is actually present in this limit,
and the relation between our theory and that of Laugh-
lin remains unclear. Nevertheless, it seems likely that
our results do not depend essentially on the answer to
this question, since the vanishing compressibility at ra-
tional v derives from the coherent addition of many
large exchange loops, an effect that could persist in the
absence of CDW order.
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