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Icosahedral Crystals: Where Are the Atoms?
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The positions of atoms in icosahedral crystals are shown to correspond to arrangements of three-
dimensional hypersurfaces in six-dimensional periodic lattices. The six-dimensional space-group
symmetry allows for crystals which cannot be formed by space-filling decorated tilings (quasicrys-
tals). Structures with continuously varying ‘‘unit cells’’ are possible. The connection between til-
ings, projections, cuts, and density-wave descriptions is pointed out.

PACS numbers: 61.50.Em, 61.55.Hg

Most textbooks in condensed-matter physics state,
without a proof, that crystalline ordering is associated
with regular three-dimensional translationally invariant
Bravais lattices; as a consequence of this assumption,
fivefold rotation symmetries are not permitted in con-
ventional crystallography. The exciting electron-
diffraction experiment by Shechtman et al.! on an alloy
of manganese and aluminum showing a diffraction pat-
tern with icosahedral symmetry (including fivefold
axes) therefore ignited an unprecedented controversy
in the world of crystallographers.? Soon after the
Shechtman experiment, Poon, Drehman, and Lawless?
discovered an alloy of palladium, uranium, and silicon
also showing icosahedral symmetry. Has nature
indeed invented a more elaborate way of arranging
atoms in space with long-range ordering as indicated
by the sharpness of the diffraction spots? From a
mathematical point of view there are no obstacles to
the concept of icosahedral crystals, since it has been
shown that there exist space-filling arrangements of a
small number of different building blocks (Penrose
tiles)*3 with icosahedral diffraction patterns. But are
these tilings indeed related to the underlying struc-
tures which produce the diffraction patterns observed
in experiments?

In previous articles® it was shown, by the use of a
general density-wave formulation, that the most gen-
eral icosahedral structures can be represented by cuts
in regular discrete lattices ia six dimensions, with sym-
metry described by a regular six-dimensional space
group. The symmetry elements of the 6D point group
are twofold, threefold, and fivefold planes, which are
all consistent with six-dimensional discrete translation-
al invariance. The wave vectors of the diffraction
spots should be thought of as projections of wave vec-
tors Q forming a regular periodic 6D reciprocal lattice.
Also, it has been shown by several authors’? that the
Penrose-tiling structure can be formed by projection of
all lattice points within a slice or tube in 6D space onto
a 3D plane. The resulting tiling produces a very
specific diffraction pattern where the intensity depends
only on the component of the wave vector Q perpen-
dicular to the plane. The existence of Penrose tiles has

led many researchers to believe that icosahedral crys-
tals are necessarily of this type, and there has been a
great activity trying to fit experimental data to models
where each tile is decorated with a basis of atoms.!% 1!
In these models the tiling lattice is thus treated as a
Bravais lattice in analogy with the structure of the con-
ventional periodic crystals. However, it has not been
demonstrated that the tiling models provide a reason-
able fit to the intensities and this has caused suspicion
that the icosahedral crystals may be, after all, merely
conventional crystals with very large unit cells,?
although I am not aware of any conventional crystal
structure which produces a diffraction pattern with the
slightest resemblance with experiment.

The object of this Letter is to give a description of
the most general crystal lattices with icosahedral sym-
metry (the simple icosahedral structures defined in
Ref. 6), and to demonstrate the connection between
the seemingly unrelated physical and mathematical
models which have been used to describe icosahedral
structures: the density-wave formalism®”!2 (Landau
theory), the tiling constructions,** and the projection
method.”™® It turns out that icosahedral crystal struc-
tures correspond to arrangements of 3D hypersurfaces,
or hypersurface segments, in 6D space, in analogy with
regular crystals which are defined by arrangements of
1D points in 3D space. A variety of interesting topolo-
gies are possible, with interesting consequences for the
diffraction spectrum and other physical properties such
as the excitation spectrum. It will be seen that the gen-
eral icosahedral crystal structures cannot be thought of as
tiling structures (‘“‘quasicrystals’’). Unfortunately (from
a practical point of view) there are many continuous
degrees of freedom for arranging the atoms in ways
which are compatible with the space-group symmetry.
Each surface is specified by three functions of three
variables. To determine the actual structure the crys-
tallographer must, in principle, go through the painful
process of determining the positions of the hypersur-
faces by doing a complete 6D crystal analysis of the
diffraction spectrum, and different icosahedral crystals
may have widely different atomic arrangements. The
quasicrystal structure defined by the projection method
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is simply a special limit, with no extra symmetry, and
so attempts to fit experimental data to decorated tiling
structures are bound to fail.

The most general structure with icosahedral sym-
metry can be written as a density®

p(r)= E,A cos(q; 1)

+2{n)BlnlCOS( zniqi'f+¢{n]). ¢}

where q;, i=1,2,...,6, are six vectors pointing to-
ward vertices of a regular icosahedron as shown in Fig.
1. The second summation is over all sets of integers
{n} = (ny,ny,n3,n4ns,ng). The icosahedral symmetry
implies that coefficients By, for which the vectors
3 n;q;, are related to each other by one of the 120
icosahedral symmetry operations are identical. For in-
stance, B (100000) = B (goo7g0)- The expression (1) de-
fines a function pq of six variables:

p(f)=p0(91,02, 03, 64, 95,96), (2a)

where the density in the real r space is obtained by set-
ting

9i=q,‘ *T. (2b)

The function pq is periodic in all its arguments with
period 27; hence it represents a six-dimensional crys-
tal. The six-dimensional function p, contains precisely
the same information as the three-dimensional func-
tion p: In six dimensions the crystal gives diffraction
peaks at Q = (ny,n,,n3,n4,n5,n¢), which have precisely
the same intensity as the diffraction peaks of the real
3D crystal at 3 n;q;. The permutations of +q, which
leave the icosahedron invariant define permutations of
+ 6, which leave (2a) invariant. These 120 operations
form the point group of the 6D crystal. The point
group has fivefold, threefold, and twofold planes. For
instance, there is a threefold plane m; spanned by the
vectors (111000) and (000111), a fivefold plane m;

FIG. 1. Fundamental wave vectors ¢; characterizing the
simple icosahedral structure.
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spanned by (1000000) and (011111), and a twofold
plane m, spanned by (110000) and (001001). Equa-
tion (2b) states that the actual density in 3D space is
the density along the 3D plane P in 6D space which is
traced out as r traverses real space. This plane forms
an invariant subspace since all symmetry operations in
6D space correspond to rotations of r. The various
possible icosahedral structures correspond to the vari-
ous ways of choosing the periodic function (2a) or,
equivalently, the basis to associate with the 6D unit
cell. This basis has to obey the icosahedral symmetry.
The real Bravais lattice of the structure is thus six
dimensional.

Until now I have not made any assumptions about
the objects which form the basis. I now want to
describe structures which can be formed by arrange-
ments of atoms in 3D space. This necessarily implies
that the basis must consist of one or more 3D hyper-
surface segments, where the intersection points
between the hypersurfaces and the 3D real-world plane
define the positions of the atoms. There is a one-to-one
relation between the possible ways to arrange hypersur-
faces on a 6D lattice and the possible ways to arrange
atoms in 3D icosahedral crystals. The size and density
of the atoms can be represented by the association of a
width to the hypersurface along P. Figure 2 illustrates
various periodic arrangements of hypersurfaces (the
figure could also illustrate how a one-dimensional in-
commensurate structure can be constructed from a
two-dimensional regular structure).

The arrangement of hyperplanes must obey the
icosahedral space-group symmetry defined above. If a
surface is placed at a general position in the unit cell it
must be accompanied by 119 others generated by ap-
plication of the point-group operations R to the sur-
face; this causes messy unphysical arrangements with
overlapping atoms. To avoid this the surface must be
placed at positions with special symmetry. The sim-
plest structures correspond to hypersurfaces which are
invariant under R. The simplest invariant hypersur-
face is a 3D hyperplane P’ perpendicular to P [Fig.
2(a)]. Clearly the resulting crystal structure can be
viewed as arising from a projection on P of 6D lattice
points within a distance from P defined by the size of
the hyperplane segment. The symmetry planes m;,
ms, and m, defined above intersect both P and P’
along symmetry axes. Figure 2 shows a fivefold plane
intersecting P and P’ along fivefold axes. In principle,
the hyperplane may extend arbitrarily along P'. If the
surface is chosen to be the projection of the 6D unit
cube onto P’ the hyperplane segment becomes a
three-dimensional rhombic triacontahedron and the
Penrose-tiling structure is recovered as shown by
Duneau and Katz? and Elser.’ A tiling structure also
emerges if the segment is chosen to be a sphere.” We
have thus demonstrated that the tiling structures arise
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FIG. 2. Periodic arrangement of real-space 3D surfaces in
6D space. The figures show cuts along a fivefold plane. The
plane P represents real space. P’ is the invariant space
orthogonal to P. (a) The 3D surfaces are planes along P’,
(b) the surfaces are distorted planes, and (c) the surface seg-
ments form a multiply connected extended surface.

as special limits of much more general structures.

In general, the diffraction pattern can be derived
simply as the Fourier transform of the content of the
6D unit cell, in analogy with regular 3D crystals. In
the quasicrystal limit where the unit cell contains only
a plane segment the intensities of Bragg peaks obvi-
ously depend only on the component of the corre-
sponding 6D vector Q perpendicular to P. Unfor-
tunately this simple result does not apply to the gen-
eral case.

The general structures cannot be formed as projec-
tions, even in the simple case of one invariant surface.
Symmetry does not restrict the invariant hypersurface
to be a plane. It is possible to distort the plane without
destroying the invariant properties. Consider a general
point (x’, 0) on the plane segment along P’, where the
second coordinate indicates the component along P. A
distorted plane is given by points (x’, f(x')) [see Fig.
2(b)]. The application of any point-group operation R
to this point yields the point (R (x'),Rf(x’)). The
surface is invariant as long as R (f(x'))=f(R (x'))
for all x’. The distorted surface can be generated by
rotating the surface within an irreducible section of the
plane segment along P’. The distortion f(x’') is re-
stricted only if x’ is along one of the n-fold rotation
axes in P’ where R (x') =x’, since then the distortion
must be along the corresponding n-fold axis in P to as-
sure invariance. Figure 2(b) shows the intersection of
the hypersurface arrangement with a fivefold plane.
The surface must be symmetric around the center be-
cause of the twofold plane perpendicular to the plane.
In order to specify the position f(x’) or just one plane
one must determine three functions f of three vari-
ables x’. And in a realistic model there must be
several surfaces that correspond to the different con-
stituents of the alloy. Clearly the intensities of the
Bragg spots obtained by Fourier transformation of the
arrangement of hypersurfaces do not depend on Q in a
simple way.

For small distortions f the resulting crystal structure
can be viewed as a modulation of the Penrose tiles,
and Q spots with a large perpendicular component will
be weak. The case shown in Fig. 2(b) is essentially a
tiling model with atomic relaxations. For larger distor-
tions new classes of structures appear, for instance be-
cause it is possible to connect surfaces which corre-
spond to different cells without violating the sym-
metry. Figure 2(c) shows a cut along a fivefold plane
of such a surface. Note that the distance between two
successsive atoms is modulated around an average dis-
tance, as for incommensurate crystals, in contrast to
Fig. 2(a) where two distinct lengths are involved. A
detailed analysis reveals that it is not possible to con-
nect the surfaces to form extended surfaces with the
topology of 3D planes. In general the resulting sur-
faces are multiply connected. (For a lower dimensional
analog think, for instance, of the multiply connected
Fermi surface in a cubic material like copper; the cubic
symmetry forbids extended planes. The analogy
should not be taken too far: One might suspect that
saddle points would cause two lattice points to come
arbitrarily close together. In 6D it is possible to have
connected surfaces with rather small variations of the
distances.) A variety of interesting topologies are pos-
sible. The connectedness implies that the crystal
structure can be formed by stacking a continuous dis-
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tribution of unit cells; these icosahedral crystals can be
thought of physically as caused by the frustration due
to the inability of the ‘‘natural’ unit cell to fill space:
As a compromise the unit cell adjusts to the local en-
vironment by distorting. Nevertheless, the long-range
order is strictly preserved. The tiling or quasicrystal
picture loses its meaning completely! The connected
topology has interesting consequences for the continu-
ous phase degrees of freedom associated with a shift of
P along P’: Some atoms are shifted continuously
whereas in the tiling limit the phase shifts describe
rearrangement of tiles.®

So where are the atoms in a particular icosahedral
crystal? Unfortunately, the conclusion of this paper is
that there is no ‘‘quick fix’’ to solve the crystal struc-
ture since the icosahedral symmetry is sufficiently low
to allow for complicated continuous possibilities of ar-
ranging the atoms. No simple mathematic model can
possibly describe the structure. One might speculate
that in the Mn alloy there is an Mn hypersurface
through (000000) and six Al surfaces through
(%00000), but this is merely a guess. Even if this
were the case it would be a monumental job to deter-
mine the surfaces. The stoichiometry is not of much
help: The extensions of the hypersurfaces and there-
fore the concentrations can vary continuously. If one
really wants to know where the atoms are there is no
way out: One has to perform a complete six-
dimensional crystal analysis to determine the positions
of the hypersurfaces within the unit cell. Only then
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can one determine the arrangement in real space by
cutting the 6D space along the plane defined by Eq.
(2b)!
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