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Stability of the High-Pressure Body-Centered-Cubic Phase of Helium
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This paper reports absolute free-energy calculations of the fluid, body-centered-cubic, and face-
centered-cubic phases of helium at T= 327.04 K. We find that at and around this temperature the
model potential proposed by Aziz et al doe. s not yield a stable bcc phase. Quantum corrections do
not alter this conclusion.

PACS numbers: 61.20.Ja, 64.60.Cn, 67.80.6b

In 1982 Loubeyre et ai. ' reported the observation of
a cusp in the melting curve of ~He around room tem-
perature. In Ref. 1 and in subsequent publications2 "
it is suggested that the cusp in the melting curve is due
to the appearance of a thermodynamically stable
body-centered cubic (bcc) phase of helium between
the fluid and the face-centered cubic (fcc) solid phase,
for temperatures above 299 K. Levesque et ai. 5 carried
out constant-stress molecular-dynamics simulations6 to
study the nature of the phase transformations in dense
helium. In these simulations the pair potential pro-
posed by Aziz et al 7was u. sed to model the inter-
molecular interactions in dense helium. Constant-
stress Monte Carlo simulations on the same model
system were carried out by Loubeyre, Levesque, and
Weis. s Both sets of simulations indicate that above
room temperature the fcc phase of 4He transforms
upon expansion (and/or heating) into a bcc solid. The
latter phase is observed to melt upon further lowering
of the density.

In the present paper I report absolute free-energy
calculations of the fcc, bcc, and fluid phases of "Aziz"
helium. Our simulation results are fully consistent
with the findings of Refs. 6 and 8 on the mechanical
stability of the different phases involved. However, I
find that the Aziz potential cannot explain the thermo-
dynamicai stability of the bcc phase of He around 300
K. I have also studied the effect of the lowest-order
quantum corrections but these have little effect on the
relative stability of the fcc and bcc phases.

The excess Helmholtz free energy F,"„(p) of the
fluid phase at density p is most easily calculated by
thermodynamic integration:

F~„(i.)/AT=„(P(p )/i kT I]/l'di' (1-).
In Eq. (1) P is the pressure at density p'„T is the ab-
solute temperature, and k is the Boltzmann constant.
To carry out the integration in Eq. (1) I performed
Monte Carlo simulations for a system of 256 particles
at a number of densities along the T= 327.04 isotherm
(see Fig. 1). This particular temperature was chosen
because the simulations of Loubeyre, Levesque, and
Weis8 were carried out for the same value of T. In Fig.

1 I have included eight state points from Ref. 8. No
systematic differences between my data and those of
Loubeyre, Levesque, and Weis are observable. In ad-

dition, I evaluated the second virial coefficient of Aziz
helium at 327.04 K. With use of this information the
Monte Carlo data were fitted by a fifth-order polyno-
mial in the density. The free energies of the fcc and
bcc solids were evaluated by construction of a reversi-
ble path from the sohd under consideration to an Ein-
stein crystal with the same structure. 9 The method
used in the present simulations differs slightly from
the one described in Ref. 9. Let us consider a poten-
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FIG. l. Equation of state of Aziz helium at T = 327.04 K.
Open circles, fluid phase; inverted triangles, fcc phase.
Drawn curves, polynomial fits to the Monte Carlo data (see
text). The bcc branch has been omitted from this figure.
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tial energy function

(2)

Here Vo is the potential energy of the solid with all

atoms at their lattice sites, V(r) is the potential energy
of an assembly of W particles interacting through the
Aziz potential, and (1 —)l. )K is a variable spring con-
stant binding all atoms to their lattice sites. For A. = 1,
U(A. ) describes the interaction of the crystal under
consideration; for X =0, U()l. ) is the potential energy
function of an Einstein crystal with the same structure.
In practice, K was chosen such that the mean square
displacement of the atoms in the Einstein crystal was

approximately the same as in the unperturbed solid.
As the absolute free energy of the Einstein crystal is

known, the free energy of the helium crystal can be
determined either by thermodynamic integration, us-

ing

distribution results). I also computed the dependence
of the coexistence lines on the temperature using
dP/dT = AH/Tb, V. As can be seen from Table I the
resulting slopes are very nearly equal. This implies
that there is a fairly wide temperature range around
T = 327 K where the bcc phase is not stable.

At first sight the present findings may seem to be at
odds with the constant-stress molecular-dynamics and
MC simulations of Refs. 5 and 8. Both sets of simula-
tions report a spontaneous transition from fcc to bcc as
the pressure is decreased (or the temperature is in-

creased) and back to fcc as the pressure is increased
(temperature is decreased). There is, however, a con-
siderable amount of hysteresis associated with the
transformation fcc bcc fcc. In the constant-stress
simulations a phase transformation occurs when the
initial phase becomes mechanically unstable with
respect to the other phase. The phase transformation
takes place with an irreversible decrease of the Gibbs
free energy of the system. The final state must be

(3)

or by some other method (see, e.g. , Frenkel and
Ladd'0). I computed F,„ for both the fcc and bcc
phases of Aziz helium at pl=—0.23966 moi/cm3. Two
methods were employed, namely thermodynamic in-

tegration, using a ten-point Gauss-Legendre quadra-
ture, and Bennett's overlapping-distribution method"
using twelve values for the coupling constant h. . Both
methods gave identical results to within their respec-
tive estimated errors. In what follows I shall be using
the thermodynamic integration results for Fr'„' and
F~'. All conclusions I shall arrive at below hold also
for the overlapping-distribution results. At pt I obtain
the following excess free energies: F;„'/Nk T
= 10.4907 + 0.0012 and F,b„"/lVkT = 10.4994 + 0.0014.
Note that at p& the fcc phase is slightly, but significant-
ly, more stable than the bcc phase. I carried out MC
simulations on a 256-particle fcc crystal at seven densi-
ties and on a 250-particle bcc crystal at five densities.
Combining my data with those of Ref. 8 I could fit the
fcc and bcc isotherms by a three-term polynomial in
the density (see Fig. 2). The finite-size corrections to
the excess free energies were estimated to be smaller
than the error in the thermodynamic integration
results. Combining all the available data we are now in
a position to compute the coexistence points of fluid,
fcc, and bcc Aziz helium (see Table I). The coex-
istence lines have been indicated in Fig. 2. Note that
we find that at T=327.04 K, Aziz helium does not
have a stable bcc phase. In order for a stable bcc phase
to be at all possible at this temperature our estimate of
F,'„' —Fcx" has to be off by at least 5 standard devia-
tions (much more, if we use the overlapping-
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FIG. 2. Equation of state of the fluid (open circles), bcc
solid (pluses), and fcc solid (inverted triangles) phases of
Aziz helium around its melting point at T =327.04 K. The
drawn and dashed curves are polynomial fits to the Monte
Carlo data. The horizontal dashed lines are the classical esti-
mates for the coexistence pressures (see Table I). Estimated
errors in these transition pressure are indicated by vertical
bars. Note that this error estimate is almost ten times larger
for the fcc-bcc transition than for the fcc-fluid transition.
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Pfcc-liquid (GPa)
pr~ (mol/cm )
pl iq (l1101/cIll )
FP/Wkr
dP/dT (GPa/K)

P,„,(Gla)
pr„(mol/cm')
pb (mol/cm')
FP" /NkT
dP/dT (GPa/K)

Classical

15.07(4)
0.2401
0.2345

10.528 (2)
0.727 (5)

13.2(3)
0.2312
0.2305
9.771(2)
0.072(7)

Quantum [O(t')]
14.73 (4)
0.2355
0.2300

10.501 (2)
0.737 (5)

12.9(3)
0.2265
0.2258
9.807(2)
0.072 (7)

TABLE I. Coexistence properties of Aziz helium. The
left-hand column shows the classical transition pressure,
coexistence densities, and slope of the coexistence line. The
right-hand column was obtained from inclusion of quantum
corrections to lowest order. Note that the estimated error in
the transition pressure is about 10 times larger for the fcc-
bcc transition (lower half) than for the fcc-liquid transition
(upper half). The estimated error in the densities is almost
exclusively due to the error in the coexistence pressure and
has therefore not been indicated separately. Also indicated
in the table is the excess Helmholtz free energy of the fcc
phase at coexistence. The excess free energy is expressed in
units of NkT. Knowledge of F'" of one coexisting phase suf-
fices to compute I " of the other. All data in this table were
calculated at T= 327.04 K.

portant even at room temperature. I have therefore
computed the lowest-order [0(/f2) ] quantum correc-
tions to the free energy, using the method described
by Hansen and Weis. '2 These quantum corrections
were evaluated for the dense liquid and the fcc and bcc
solids. From the quantum corrections to the free en-
ergy, we obtain the corresponding corrections to the
pressure by numerical differentiation. The improved
estimates for the coexistence points have been collect-
ed in Table I. Although quantum corrections do shift
the transitions somewhat, they do not change the qual-
itative picture. Nor do quantum corrections affect
dP/dT much (see Table I).

Hence, we must conclude that the Aziz potential for
helium does not predict a stable bcc phase around
room temperature. I stress once more that my results
are compatible with the simulations of Refs. 6 and 8
because the observed limits of mechanical stability for
the fcc and bcc phases are never in conflict with the
relative thermodynamical stability that we compute.

I gratefully acknowledge discussions with M. L.
Klein, R. leSar, and, in particular, P. Loubeyre, who
kindly made the MC data of Ref. 8 available prior to
publication.

thermodynamically more stable than the initial state,
but jt need not be the true equilibrium state at that
particular temperature and pressure. In the helium
case the constant-stress simulations show a transition
from fcc to bcc. The present calculations indicate that
at the point where this transition occurs, the Gibbs
free energy of the bcc phase is indeed lower than that
of the fcc phase. But both phases are thermodynami-
cally unstable with respect to the liquid. At the ther-
modynamic melting point of the fcc phase, the bcc
phase has a higher Gibbs free energy than the fcc
phase. At no point is the bcc phase more stable than
both the liquid and the fcc phase. As the bcc phase is
compressed in the constant-stress simulations, a tran-
sition takes place to the fcc phase. The present results
show that this occurs at a point where the fcc phase is
indeed thermodynamically stable. Hence the observa-
tions made in constant-stress simulations are not in
contradiction with the present results. Our absolute
free-energy calculations only show that the bcc solid
observed in the earlier simulations is not a thermo-
dynamically stable phase.

As 4He is very light, quantum effects might be im-
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