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Soft-Wall Domain-Growth Kinetics of Twofold-Degenerate Ordering
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The domain growth in a two-dimensional twofold-degenerate system with soft domain walls is
sho~n to obey dynamical scaling. The value of the growth exponent is n = 0.25 which differs from
the classical Lifshitz-Allen-Cahn prediction n= ~, but accords with recent findings for other

growth models with soft walls. The results suggest that domain-wali softness may be more impor-
tant than the degeneracy of the ground state for a possible universal classification of domain-
growth kinetics.

PACS numbers: 61.50.Cj, 05.70,Ln, 68.35.—p

During the search for a universal classification of
domain-growth kinetics in nonequilibrium systems un-
dergoing ordering processes, the concept has emerged
that only a small number of features may be relevant
for the classifying of a great variety of different growth
processes. The following tentative picture is suggested
by results emanating from an extensive program in-
volving theoretical calculations, ' experimental mea-
surements, 8 " and computer simulations'3 26 (i) The
conservation laws governing the growth process are
relevant. (ii) The degeneracy, p, of the ordering may
be relevant. (iii) The softness of the domain walls
may be relevant. (iv) Irrelevant features include spa-
tial dimension (d ~ 2), details of the microscopic in-
teractions, and possibly lattice structure.

The most extensively studied case is that of twofold
degenerate ordering (p=2) in two-dimensional sys-
tems such as binary alloys and simple Ising antifer-
romagnets. In the event of no conservation laws,
theory, ' 3 5 6 experiments, s 9 and computer simula-
tions2'3'6'8 2'26 give the unanimous result that the
growth is a self-similar process and that the structure
factor exhibits dynamical scaling. The characteristic
exponent of the associated scaling function assumes
the classical value, n = —,', of Lifshitz-Allen-Cahn
curvature-driven growth. 27 28 A fundamental property
of the models and the experimental systems studied
for p = 2 is that the domain walls, which are formed
during the growth process, are hard, i.e., sharply con-
fined in space. Recent computer simulation stud-
ies'7'9 23 2" of soft-wali models with p ) 2 have sug-
gested that these may belong to a different universality
class characterized by n = —,', independent of the value
of p

The question then naturally arises as to the nature of
the growth process in p=2systems with softy l/ aSsuch
systems constitute the touchstone for a dual universal
classification into classes of systems with hard and soft
domain walls. The present paper is the first attempt to
answer this question by reporting on a computer-
simulation study of the domain-growth kinetics in a
two-dimensional p=2 model with soft walls. The

results of this study give compelling evidence in favor
of the dual universal classification, and that softness,
rather than the value of p, is a relevant feature.

The microscopic interaction model of the p = 2
soft-wall model is defined by an anisotropic planar ro-
tor Hamiltonian

(nnn) (nn)
H = J X cos(@;—@,)

—P g cosQ, cos@,

where @t is the polar angle of a classical rotor. The
model is arrayed on a square lattice and the coupling
parameters J and P are positive. The sums of Eq. (1)
include the four next-nearest neighbors and the two
nearest neighbors along the x axis, respectively. The
uniaxial P term serves to break the cubic symmetry of
the interaction resulting in a (2 x 1) antiferromagnetic
ground state described by an n =1-component Ising-
type order parameter. There are p = 2 thermodynami-
cally degenerate ordered (2&1) domains at low tem-
peratures. The symmetry of the order parameter is
similar to that of a binary alloy or type-III Ising antifer-
romagnet on a rectangular lattice.

The continuous rotor variables of Eq. (1) allow for-
mation at low temperatures of walls of finite thickness
(soft walls) between the two types of ordered domains.
The value of P controls the softness and thickness of
these domain walls: The smaller the value of P/J, the
softer and wider are the walls. In this paper, the
domain-growth kinetics is studied for a single value of
the softness parameter, P/J=5. Results for other
values of Pare reported elsewhere. 29

The time evolution of the ordering process governed
by Eq. (1) coupled with single-site Glauber dynamics
is calculated by a Monte Carlo computer-simulation al-
gorithm. At time t=0, a disordered configuration
characteristic of infinite temperature is quenched glob-
ally to zero temperature, i.e., far below the phase tran-
sition temperature. The time is measured in Monte
Carlo steps per site. During the ordering process, the
order parameter is a nonconserved quantity. The
simulations are carried out on lattices arith periodic
boundary conditions. Finite-size effects are estimated
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by studying a series of lattice sizes, including N
= 60 x 60, 100 && 100, and 200 x 200 rotors. Ensemble
averages at each time are obtained by averaging over a
large number of independent quenches.

The dynamical evolution following the quench is
monitored by calculating, as a function of time, a
number of quantities:

(i) The excess energy, AE(t) = (H(t) ) —Fo, with

Eo = 2J+ P, accounting for the nonequilibrium inter-
nal energy stored in the entire network of domain
walls.

(ii) The dynamical structure factor

S(q t) =N '(I g cosfy, (r) le' ' " "[')
j=1

calculated in the modulated direction, q= (q, 0),
around the Bragg condition q=0, as well as its two
first moments
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k (r) = X' ~q ~ S(q, r) [X'S(q, r)] ', m =1,2,

(3)
where q = 2n j/v% J= —M/V'/2, ..., O, ...,JN/2. The
primed sums of Eq. (3) are restricted by an ultraviolet
cutoff, 3'

~ q ~

~ 0.3n . From the moments, two mea-
sures of length scale may be obtained, ki '(t) and
k2 '~'(r).

(iii) The average linear domain size, R (t), calculat-
ed from direct inspection of microscopic configura-
tions. 32 R (t) is a reliable measure of length scale for
compact domains. Since the domain pattern for the
present p = 2 model, in analogy with that of p = 2 Ising
models, is highly percolative, conclusions regarding
time-dependent length scales will primarily be based
on the moments of the dynamical structure factor. 33

In Fig. 1 S(q, r) is shown for a series of times as ob-
tained from a 100X 100 lattice. First of all it is noticed
that there is a persistent growth at all times considered.
(Some quenches have been taken up to r=3000.)
This result is consistent with previous observations
that soft-wall models on square lattices do not get
pinned at zero temperature in contrast to hard-wall
nearest-neighbor Ising models with no conservation
laws. The absence of freezing-in behavior of the
present model makes it particularly suitable for a dis-
cussion of universality. Figure 1 shows, as time
elapses, that S(q, r) develops a rounded peak around

q = 0 which gradually becomes more intense and more
narrow. S(q, t), which is symmetric, has a shoulder at
low ~q) due to the finite-size —induced partial sym-
metry breaking at q =O. The nonsmooth behavior
of S(q, r) for small q reflects the incomplete averaging
of the satellites present in S(q, r) of each individual
quench. A complicated pattern of satellites arises be-
cause of scattering from the inhomogeneous domain-
wall network which lacks supersymmetries. Similar
shoulders on S(q, t) occurring at the same relative
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FIG. 1. Dynamical structure factor $(q, r), Eq. (2), at
times t = 80, 100, 150, 200, 250, 300, 400, and 500. Inset:
The corresponding dynamical scaling function, F2(x), Eq.
(4). (Data for a 100 & 100 lattice. )
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wave vectors are seen in dynamic studies of other
growth models, '3'4'8 26 including p=2 hard-wall Is-
ing models.

The dynamical scaling properties of the growth pro-
cess are investigated by study of the scaling functions

F~(x) = k2~ S(q, r), m=1, 2,

where x=qk '~ is the scaling variable. The inset in
Fig. 1 demonstrates that„by means of the scaling vari-
able x = qk2 '~2 (r), the entire set of data for S
&& (q, t & 80) may be collapsed into a single function
F2(x). A similar statement holds for Fi(x). Thus
the growth process obeys dynamical scaling. Because
of difficulties with the statistics at q =0, we are un-
able to confirm the scaling property at small wave vec-
tors. Similar diffleulties are encountered in studies of
the dynamical scaling function for p = 2 hard-wall Ising
models. "

Dynamical scaling of S(q, t) implies that the charac-
teristic length scales of the growth process are
described by power laws k '~ (r) —r" with n being
the kinetic exponent. This is clearly borne out by Fig.
2(a) which shows a log-log plot of ki ' (t) and
k2 '~2 (r) vs time. Both length scales are accurately
described by power laws with approximately the same
exponent, n = 0.25. The power laws are found to hold
for r & 20. For comparison, Fig. 2(a) reproduces the
corresponding growth data for k2 '~2 (t) in the case of
the p = 2 hard-wall Ising model. 34 The growth process
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FIG. 2. (a) Log-log plot vs times of length scales derived
from moments of the structure factor, Eq. (3). Results
from quenches af the p = 2 hard-wall Ising model (Ref. 18)
are shown for comparison. The solid lines denote po~er
laws, k '~ —t", with n =0.25 and n =0.50 for the soft-wall
and hard-wall models, respectively. (b) Log-log plot vs time
of the linear domain extension, R (t), and the excess energy
per rotor, AE(t) The .solid lines denote the asymptotic
power laws, R (t) —t" and AE(t) —t ", with the same ex-
ponent n = 0.2. (Data for a 200 x 200 lattice. )

in the soft-wall model may reliably be followed to later
times than in the Ising model because of a much
slower growth kinetics in the former model. In fact, as
is apparent from Fig. 2(a), the hard-wall kinetics is
nicely described by the much larger classical Lifshitz-
Allen-Cahn exponent value, n = 0.50.

When dynamical scaling holds, the excess energy,
b, E(t), measuring the total internal energy stored in
the domain walls is expected to decay with time ac-
cording to a power law, b, E(t) —t ", where the ex-
ponent assumes the same value as that describing the
growth-of-length scale. '6 That this is indeed the case
for the present growth process is demonstrated in Fig.
2(b). In the same figure, the data displayed for the
linear domain extension, 8 (t), are seen to corroborate
the notion that also R (t) is asymptotically described
by the same power law, 8 (t) —t", with n = 0.25.

In conclusion, it is found that the domain-growth
process of the soft-wall model in Eq. (1) obeys dynam-
ical scaling and that the various measures of length
scale are consistently described by power laws in time
with the same growth exponent, n-—0.25. A funda-
mental property of this growth model is that during the
ordering process it supports formation of soft domain
walls extending over finite regions of space. The
results described in this paper refer to a single value of
the softness parameter. However, identical results are
found for 0.5 & P ( 50,29 i.e., S(q, t) obeys dynamical
scaling and the various growth laws are associated with
the same value of the growth exponent, n =0.25. It
thus appears that the class of p=2 soft-wall models
defined by Eq. (1) gives rise to a kinetic exponent
which is the same as that found for all other studied
two-dimensional soft-wall models characterized by a

number of different values of the order parameter de-
generacy: p = 4, 3 p = 6, ' and p = 48. 0 This ensem-
ble of findings supports the hypothesis that the kinet-
ics of domain growth in soft-wall systems with a non-
conserved order parameter belongs to a separate
universality class characterized by a kinetic exponent
value n = —, which is distinctly lower than the classical
Lifshitz-Allen-Cahn prediction, n = —,'. The results of
the present paper suggest that the value of p is ir-
relevant for this classification even in the case of a
binary (p = 2) system. It should be noted that a soft
domain wall in the rotor model corresponds to a spatial
gradient of the order parameter. In the lattice-gas for-
mulation of the analogous adsorption problem, a soft
wall would imply a region where the adsorbed layer is
out of registry with the substrate, i.e., the surface ten-
sion of the wall is lowered by relaxation in terms of
translational degrees of freedom. It is therefore antici-
pated that soft-wall kinetics should apply for ordering
phenomena in physisorbed rather than chemisorbed
overlayers.

It is notoriously difficult to construct quantitive
theories of domain growth for p ) 2, ' whereas a
number of successful theories have been advanced in
the case of p = 2.' 3 s 6 27 28 The results of the present
paper suggest that, in the search for a universal classi-
fication scheme of domain-growth kinetics, one should
reexamine the theories for p = 2 with a view to clarify-
ing whether the kinetic behavior is changed in an
essential manner when, on its way toward equilibrium,
the system is allowed to relax locally, not only by
boundary migration, but at the same time by domain-
wall broadening.
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