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Observations of Spheromak Equilibria Which Differ from the Minimum-Energy State
and Have Internal Kink Distortions
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Experimental spheromak magnetic equilibria are measured which differ significantly from the
minimum-energy state, and are well described by a numerical model where j;/ B has a linear depen-
dence on the poloidal flux function. Equilibria are determined in a nonperturbing manner by the
combination of measurements of flux-conserver image currents with calculations from this model.
These equilibria are corroborated by the observation of nondisruptive rotating internal kink distor-
tions (with toroidal mode numbers n=1, 2, and 3), coupled with theoretical MHD thresholds for

the onset of these modes.

PACS numbers: 52.55.Hc, 52.35.Py, 52.70.Ds

In a spheromak, the magnetic fields are generated
primarily by internal currents rather than by external
coils. Once established, these fields are conjectured!
to relax towards a state of minimum energy subject to
the constraint that the magnetic helicity? is conserved.
In a closed system the minimum-energy equilibrium
satisfies VxB=AB with A=uyj,/B=const. Since
competing effects are certainly present in any experi-
ment, small deviations from a uniform, constant A can
be expected. However, these departures from the
minimum-energy or ‘“Taylor’’ state are expected! to
relax towards this lowest-energy configuration on a
time scale shorter than the resistive diffusion time.

We report results from the compact toroid experi-
ment>* (CTX) which give spheromak equilibria
(determined in a nonperturbing manner) not with
A =const, but with A=A(y), where ¢ is the normal-
ized poloidal flux function [y = (poloidal flux value)/
(total poloidal flux)]. The departures in magnetic en-
ergy of these equilibria with respect to the minimum-
energy state is small. Coherent oscillations are seen,
generated by rotating kink modes within the equilibria.
The onset of the modes is shown to be consistent with
the slope of A () from the equilibrium measurement.

Other spheromak experiments>® have measured the
magnetic fields with internal probes, and have found
experimental agreement with a zero-pressure, con-
stant-A\ model. Hart et al’ obtained for their data
better agreement by including a finite-plasma-pressure
correction to a constant-A model.

In CTX, the A () profile is inferred from external
measurements of induced image currents flowing in a
mesh flux conserver® (MFC) surrounding the plasma,
combined with results from numerical calculations of
the equilibrium. This general technique is in principle
similar to that used before to establish the MHD
equilibrium in noncircular-cross-section tokamaks
[see, e.g., Luxon and Brown,® and references therein].
Application of the technique to the CTX spheromak
benefits from increased sensitivity to equilibrium

changes since the spheromak is a small-aspect-ratio
system; changes in the equilibrium affect the position
of the magnetic axis and have a large effect on toroidal
MFC image currents near the symmetry axis. Arrays
of small Rogowski loops (5% relative calibration) mea-
sure the MFC currents, with the ratios of the currents
(filtered to remove oscillations) at different radii used
to determine the spheromak equilibrium. The present
MFC, similar to but larger than the one outlined in
Ref. 8, is approximately an oblate spheroid of diameter
136 cm and length 62 cm. It is constructed of 1.3-cm-
diam oxygen-free, high-conductivity copper rods weld-
ed together at the rod crossings to form a mesh with a
nominal spacing of 5 cm.

An axisymmetric ideal MHD equilibrium is comput-
ed by solution of the Grad-Shafranov equation, with
the A(y) profile and the boundary conditions speci-
fied. The plasma pressure is assumed to be zero. As a
departure from a constant-\ profile, we express A by a
power-series expansion in ¥, using only the first two
terms: A(g)=A[1+a(2¢—1)], where the free
parameter « adjusts the slope of A (¢). The coefficient
\ is the average of A (/) over ¥ and is determined by
the geometry and «. Each toroidal hoop of the MFC is
assumed to be a perfect flux conserver, containing no
net flux. In the model, all plasma currents are con-
fined to the interior of the MFC. With use of these
boundary conditions, the hoop image currents are then
calculated as a function of «. The best value of « is
obtained by application of a least-squares minimization
technique to the difference between the measured and
the calculated values of the toroidal-hoop currents as «
is varied. Knowing the value of a specifies A (), and
the inverse rotational transform ¢ () can then be cal-
culated.

This procedure can be extended to include higher-
order terms, either in the functional dependence of A
on ¥, or finite-plasma-pressure effects. Because the
MFC is not a perfect flux conserver, a finite amount
of equilibrium current ( ~ 6% of the spheromak po-
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loidal current) flows in the poloidal hoops. This effect
obscures the contributions of higher-order terms when
they are included in the expression for A (y¢). In-
clusion of plasma pressure in the numerical models
does alter the MFC current distribution. But, for the
pressures of similar CTX discharges (Bpes of 6% from
Thomson scattering and interferometry), the effect is
smaller than the error of the present method. The
dominant effect on the MFC currents is the zero-
pressure j/B distribution. Thus, within the accuracy
of the measurements, a linear approximation to A ()
provides a quantitative as well as qualitative explana-
tion of the experimental observations.

The evolution of a typical CTX discharge has two
phases: the formation and sustainment phase when
magnetic helicity is injected to build up and maintain
the spheromak fields, and the resistive-decay phase
which begins when the helicity source is turned off.
One representative discharge has been selected for de-
tailed analysis here. The spheromak was formed by a
magnetized coaxial plasma source operating with a
current wave form that was approximately a square
pulse between 0.1 and 0.7 ms. The peak toroidal plas-
ma current at 0.7 ms was 420 kA, B,,,,=5.6 kG, and
(n,) =9%x108 cm~3% Beginning at 0.7 ms, the
spheromak plasma current resistively decayed until it
terminated at 1.55 ms.

Figure 1(a) shows examples of two MFC toroidal
currents at the same toroidal angle but at two poloidal
positions, one near the symmetry axis and one near
the maximum radius of the flux conserver. (The os-
cillations apparent in Fig. 1 are discussed below.)
Throughout formation and sustainment the ratio of
the filtered currents remains nearly constant. As the
equilibrium changes from the sustainment to the decay
phase, the magnetic axis moves radially outward, and
the distribution of the toroidal MFC currents changes,
with the MFC currents near the symmetry axis decay-
ing more rapidly than those near the outside midplane.

Figure 2 is a summary of the time evolution of the
equilibrium. The solid symbols of Fig. 2(a) are the ex-
perimental values for the MFC toroidal-hoop current
ratios, and the solid lines plus shading are the theoreti-
cal current ratios which form a reasonable confidence
interval on the value of . The value of @ which gives
the best fit to the experimental data is indicated. Us-
ing the best-fit values for « ( + Aa=0.05 error), the
corresponding A(y) and ¢ (¢) ranges for a particular
equilibrium are then calculated [Figs. 2(b) and 2(c),
respectively]l. During the sustainment phase (0.1-0.7
ms) while helicity is injected, the A () profile [cf. Fig.
2(b)] is peaked towards the outside of the spheromak
(y — 0), indicating a relatively high value of j,;/B in
that region. This is consistent with the interpretation
of spheromak sustainment by currents driven primarily
on the outer flux surfaces. The CTX experiment has
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FIG. 1. (a),(b) Representative MFC currents. Indicated
lengths are the radial distances from the symmetry axis to
the MFC hoops. (c)-(e) Toroidal-mode-number analysis.
Poloidal MFC currents at eight toroidal locations (same ra-
dius) are displayed. The curved phase fronts (n=2,3)
show the increasing rotation frequency.

maintained this non-minimume-energy equilibrium
during sustainment for up to 6 ms (greater than ten
magnetic-energy decay times). In the next time inter-
val (0.8-1.05 ms), no oscillations are present and the
A (y) profile is essentially independent of . At this
time the equilibrium has a A profile very near the
minimum-energy or Taylor state. The spheromak
does not remain in this state, nor does it return during
the remainder of the resistive-decay phase of the plas-
ma. During the following time interval (1.1-1.3 ms),
the A (y) profile continues to change slope with resis-
tivity gradients causing j,;/ B to peak towards the mag-
netic axis (yy — 1), resulting in a further drop in q.
The peaking continues during the next time interval
(1.45-1.55 ms), where the A () slope increases even
further. The configuration then terminates when the
particle density goes to zero.

These linear A () profiles are substantiated by the
manifestation of rotating internal kink distortions® 1
as coherent oscillations in the MFC currents. We first
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FIG. 2. Time evolution of the equilibrium. (a) Experi-
mental values (circles, from hoops on the MFC ‘‘hemi-
sphere’’ away from entrance region; triangles, from the
MFC hemisphere toward the entrance region) and theoreti-
cal MFC toroidal-hoop current ratios (solid lines) for the in-
dicated averaging times. The sharp minima correspond to
the corners of the MFC. Experimental data are normalized
to the value at hoop radius of 56.8 cm, on the side away
from the entrance region. (b) A(¢) vs ¢ profiles for (a).
Curves are identified by the dominant toroidal mode
number, n, at that time. (c¢) g(¢) vs ¢ profiles for (a).

describe the modes, and then couple their occurrence
(first in the experiment and then in a stability analysis)
to A(y) via the slope parameter a. The primary
toroidal mode number, n, of the oscillations can be
determined by examination of the toroidal phase of
the poloidal MFC currents. In Fig. 1(c), as the phase
of the mode rotates once in the positive toroidal direc-
tion, the oscillation goes through one cycle, and hence
is primarily an » =1 mode. During the decay phase of
the discharge, modes with higher toroidal mode
numbers appear. First an n» =2 mode appears [Fig.
1(d)], and then near the end of the discharge an n =3
mode becomes the primary oscillation [Fig.1(e)]. The
rotation of the n =1 mode during formation is driven
by an Ex B, drift applied by the gun voltage; the mode
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FIG. 3. Experimental trajectory of the A () slope param-
eter « vs time. Times indicated at the bottom correspond to
the equilibria of Fig. 2.

rotation direction reverses when either the polarity of
the voltage or the poloidal field of the spheromak
changes direction, and the frequency of rotation is pro-
portional to the applied voltage. The decaying
spheromak modes (n =2, 3) rotate in the direction of
the toroidal electron diamagnetic drift; the rotation
direction reverses when the poloidal field is reversed,
but not when the toroidal field is reversed. The pres-
ence of the oscillations is not disruptive to the equilib-
rium. In a typical discharge, the ratio AB,/B, (as in-
ferred from surface-averaged measurements of A/,
in the MFC) reaches a steady-state value of 6%-8%
during the sustainment phase, drops to 2%-3% during
the time of no oscillation, and then saturates at
9%-11% when the n =2, 3 modes are present.

A convenient visualization of the A () evolution is
a plot of the slope parameter a versus time, as shown
in Fig. 3. The shaded band is the range of «(¢) for
discharges which develop an n=3 mode, and the
crosshatched area is for a set of discharges with higher
plasma density which develop only an » =2 mode in
the decay phase. For the former case (shaded),
a= —0.3 during the sustainment phase, passes
through zero (minimum-energy state), and then con-
tinues to increase for the remainder of the discharge.
However, the a(¢) trajectory for discharges with only
n=2 modes is different, as the «(t) trajectory rolls
over at a =0.5; that is, the A () slope does not con-
tinue to increase as rapidly in time. The transport
properties of these discharges (formed at higher filling
pressure?) reduce the rate at which j,;/B continues to
peak towards the magnetic axis, and the spheromaks
do not become n =3 unstable.

The a parameter is used to compare thresholds from
a linear ideal MHD stability analysis with the oc-
currence of the observed unstable modes. The growth
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FIG. 4. Square of the normalized toroidal mode growth
rate vs « from linear ideal MHD stability analysis. Values
are normalized to the Alfvén transit time 7,=R/(Va4),
where (Va) = ([ B2dv/pofp dv)"? is the volume-averaged
Alfven speed. The value of g, is given at the top of the fig-
ure.

rate v, for the fastest-growing toroidal mode number n
is determined as a function of a. The square of this
growth rate is plotted in Fig. 4 for the n=1, 2, 3, and
4 modes. Figure 4 shows the n=2 mode becoming
unstable when « is 0.25 and the ¢ () at the magnetic
axis, q,, is approximately % The n=3 mode takes
over when @=0.7 and g,= 3. These values of a
agree with the appearance of the n=2 and n=3
modes in the experiment (see Figs. 2 and 3). The
n=1 ideal MHD mode, however, does not become
unstable until « = —0.5 and g, is substantially above
1. The experimentally observed » =1 mode, which
appears when a= —0.3 and ¢,==1, is probably the
result of a resistive instability with a lower threshold.
The internal kink modes, which are driven unstable
by the A(y) profile, do not cause a full relaxation of
the spheromak back to the minimum-energy state.
The transport processes waich cause j;,/B peaking to-
wards the magnetic axis are not balanced by the stabil-
izing influence of multiple reconnections, which make
possible a redistribution of the current, as in the
reversed-field pinch.!! This nonrelaxing behavior of
the decaying spheromak modes is similar to that seen
in a numerical simulation of nonresonant spheromak

modes,!? where internal ideal MHD modes grew to
small but finite amplitude, resulting in a smooth tran-
sition to a new helical equilibrium.

In summary, because of nonuniform resistivity,
spheromak equilibria as described by a linear depen-
dence of A on ¢ are found to pass monotonically
through the minimum-energy state, and are observed
to maintain departures from the minimum-energy pro-
file for times greater than the resistive decay time of
the configuration. Deviations from the exact mini-
mum-energy state apparently do not require a concom-
itant relaxation. These deviations are small in terms of
free magnetic energy relative to the Taylor minimum-
energy state, as (Wp— Wryio)/ Wrayior <0.1 for
la| =<0.7. Spheromak equilibria are determined by
the combination of measurements of flux-conserver
image currents with a numerical model, and an exam-
ple of the evolution of a CTX spheromak showing
A(y) and g () versus time is given. Associated with
the slope of A () is the occurrence of rotating internal
kink modes, with toroidal mode numbers n=1, 2,
and 3 at different times during the discharge. The am-
plitudes of these oscillations during any phase of the
discharge saturate with AB,/B, < 11%.
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FIG. 3. Experimental trajectory of the A (ys) slope param-
eter « vs time. Times indicated at the bottom correspond to
the equilibria of Fig. 2.



