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Must Nonspherical Collapse Produce Black Holes~ A Gravitational
Confinement Theorem
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It is shown that a trapped surface can be extended, in a locally area-preserving fashion, to a
three-cylinder that is everywhere spacelike, provided it encounters no singularities in its develop-
ment. Thus the interior of a regular, area-preserving, initially trapped surface is permanently sealed
off from causal influence on the exterior world.
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In the familiar scenario for the gravitational collapse
of an exactly spherical star, an event horizon forms
once matter has shrunk within its Schwarzschild ra-
dius. The horizon has the crucial role of preserving
asymptotic predictability: It acts as a dam preventing
inundation of the environment by uncontrollable
emissions of radiation and other causal influences
from the infinitely compressed material. An—obviously very desirable —assurance that this ideal-
ized scenario is actually generic would come from a
proof of some kind of "event-horizon conjecture"
(EHC). ' Broadly stated, EHC would require that an
event horizon must develop whenever a matter distri-
bution, whose energy density satisfies appropriate
positivity conditions, has collapsed to the point ~here
a trapped surface forms. (A trapped surface is a closed
two-space with the property that narrow beams of light
orthogonal to it at any point decrease in area, at least
initially, whether propagating inwards or outwards. )
So far, EHC basically remains a pious hope, bolstered
by studies of simple special cases and a failure to find
counterexamples.

It has been traditional to impose a narrower inter-
pretation on EHC by focusing on the singularities that
develop in the collapse —according to a 1965 theorem

of Penrose, 2 there must be at least one—and conjec-
turing ("cosmic censorship"3 5) that no such singular-
ity can be "naked, " i.e., not enclosed within a ho-
rizon, at least if it is sufficiently "strong"3 or stable
under generic perturbations of initial data and equa-
tions of state.

Cosmic censorship, as presently formulated, con-
fronts a growing body of counterevidence (or, at any
rate, constraints) in the shape of naked central singu-
larities that develop by "shell focusing" in models of
anhomologous spherical collapse. 7 They may be visu-
alized as "singular past horizons, " and can be either
transient or persistent in terms of external retarded
time. They are singularities of infinite curvature,
although massless in a sense that is well defined for
spherical symmetry. These models are not counterex-
amples to EHC, however, since event horizons do
form around the massive central singularities that gen-
erally develop afterwards.

The aspect of EHC to be addressed here circum-
vents the delicate issue of singularities. In brief, the
question is as follows: ~ill a trapped surface So always
remain trapped~ In other words, can one prescribe a
future history for So that will extend it, more or less
rigidly, to a three-cylinder X that is everywhere space-
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like, so that later sections of X are also trapped'? (I
shall expressly assume that X itself encounters no
singularities in its development, though it will general-
ly enclose at least one and there may be lesser singu-
larities due, e.g. , to "shell crossing" exterior to it. ) If
this can be shown, it would guarantee that whatever
lurks inside So is permanently sealed off from causal
influence on the external world, barring some violent
eruption. (Since past light cones on X face outward,
any such eruption would presumably entail a gross
violation of causality on X.) A confinement property
of this type seems to capture much of the essence of
EHC, and may be as much as one can reasonably hope
to prove with presently available techniques.

In seeking to implement the notion that the region
causally sealed off by So should retain a "fixed size, "
one has to bear in mind that it would be overly
stringent to demand ridigity of the intrinsic two-

geometry of So in a space-time whose curvature varies
arbitrarily; e.g. , a large eggshell in such a space-time
would crack. We shall instead require that the evolu-
tion of So be locally area preserving, which means that
not only the total area of So, but also the areas of all
surface elements out of which it is composed, are re-
quired to remain constant.

To set up an appropriate formal machinery, suppose
that a closed, convex two-space So is Lie-transported
along integral curves of a space-time vector field g,
parametrized by I. with t =0 on So. This generates a
three-cylinder X, with parametric equations x
= x (8', t ) in terms of Lie-transported two-
dimensional coordinates 8' (a = 2, 3) (Fig. 1). The
outgoing and incoming future lightlike vectors 1&„&

(A =0, 1), which generate the pair of null hypersur-
faces orthogonal to any two-section S(t), may be par-
tially normalized by l~„~i(tt& =q„tt, where qztt=an-
tidiag( —1, —I ) will be used to lower and raise upper-
case Latin indices. One can then decompose

where e(,&

="tlx (8', t)/()8' are coordinate basis vec-
tors of S (t) and n is a vector in X orthogonal to S (t).
If g,b is the intrinsic two-metric of S (t), it is easy to
verify that

2 ()g b/()t (( „bj 4 Kebab ~

where K„,b = —i(„~ ~tte(, ~et'b~ are extrinsic curvatures
of S(t); their traces, Ko and Kt, measure the conver-
gence rates of outgoing and incoming light beams. It
follows that the variation along the normal direction
n of the element of two-area dS is given by

dS = —g"Kg dS.

According to (1), the evolution of So into a three-
cylinder X is locally area preserving if the two com-
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FIG. 1. The two-surface So and its extension to a three-
cylinder X.

ponents of ( transverse to S (t) are required to satisfy

g"K„=0.

The remaining arbitrariness of these components re-
sides in the overall scaling of (, i.e. , in the definition
of t This fre.edom may be partially constrained by re-
quiring that ingoing light beams orthogonal to S(t)
should always converge, and that their convergence
rate should be uniformly bounded away from zero.
This condition simultaneously serves to prevent a lo-
cally area-preserving X from becoming tangent to in-

going light rays and thus to preserve a regular mono-
tonic relationship between t and exterior advanced
time. The mathematical expression of this condition is
that the function

C (8', t ) = ( —l(, ) i
)/( —l(, ) ( ) = K,/(',

which is independent'of the normalization of the ingo-
ing null geodesics, should be bounded above and
below by positive functions independent of t. A locally
area-preserving evolution that satisfies this constraint
will be called "semirigid. "

From (2) and (3),

«~a( ~

8

where ~&8 is the permutation symbol, with &0&=e'
= + 1. The vector

N = —e(N)e" goal(e), e(N) =sgn(N N )

is an outward normal to X.
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%e are now in a position to state the theorem. Let
the three-cylinder X be a semirigid future extension of
the trapped two-surface So. Then X is initially space-
like, and must remain spacelike, at least as long as it
remains nonsingular. It is assumed that any matter
crossing X satisfies a weak energy condition
( T &u u~ ~ 0 for all timelike u ).

The first part of the theorem is geometrically obvi-

ous. To prove it formally, one notes that, initially,
Ko & 0 (since So is trapped) and K, ) 0 always. It
then follows from (2) that, initially, ( is positive and
/V N = —g"It:„ is negative.

%e next show that X A can never become positive
by passing through zero. To this end, we invoke one
of the Arnowitt-Deser-Misner constraint equations for

where a = l(o) Ipl(i) "P tra = l(o) ~ply)eI, &, and a dot
denotes the "time" derivative c)/dt S.uppose that
there were a transition point pt, on a section S (t&), at
which N first became null. At p& we should then
have

(2)~2(l ~ ()

By insertion of (4) it is now easy to show that each in-
dividual term on the right-hand side of (5) is zero or
positive at pt. Thus (5) reduces to

which contradicts our hypothesis that ("g„has
reached zero from positive values and is about to pass
to negative values. The essence of this result can be
understood geometrically on the basis of Ray-
chaudhuri's equation. 8 Because of the focusing effects
of shear and matter, an outgoing pencil of light ortho-
gonal to S(t, ), which must be momentarily stationary
at the hypothetical transition point p&, cannot become
expanding to the future of p&. Therefore, an area-
preserving surface element of X cannot slice the light
cones to the future of p& and thus its history cannot
pass from spacelike to timelike at p.

A fuller account of this work is scheduled for publi-
cation elsewhere.
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