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Chiral Symmetry and Chiral Anomaly in an Incommensurate Charge-Density-Wave System
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It is shown that chiral symmetry and chiral anomaly are inherent to the incommensurability of a

quasi one-dimensional charge-density-wave system. This chiral anomaly induced by the applied
electric field is interpreted as an acceleration mechanism of the sliding charge-density wave and is

connected with the Thomas-Fermi screening effect. The explicit breaking of chiral symmetry due
to the external potential is proved to have a sinusoidal dependence on the phase order parameter.
Possible observable effects are also discussed.
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Recently extensive studies of anomalies in field
theory, especially the chiral anomalies, were reported
in the literature. ' The anomalies are essentially due to
the quantum fiuctuations which break a symmetry of a
classical Lagrangean. A natural question is then, "Are
there phenomenon associated with the chiral
anomalies in condensed matter physics?" On the
other hand, the quantum mechanical aspects of the
dynamical behavior of the moving charge-density wave
(CDW) still attract considerable interest. In this pa-

per we point out the existence of chiral symmetry and
chiral anomaly in the incommensurate quasi one-
dimensional CDW sytsem. We then interpret the ef-
fect of chiral anomaly in a (1+1)-dimensional Abelian
gauge-field theory as an acceleration mechanism of the
sliding CDW. It is also connected with the Thomas-
Fermi screening effect as a quantum fluctuation of the
electrons in the filled valence band. Furthermore, we

show that the breaking of chiral symmetry due to the
external potential (explicit breaking) as well as the
anomaly plays an essential role in understanding the
dynamics of the incommensurate CDW (ICDW) sys-
tem. Especially, the sinusoidal nonlinear coherent
response, which has been interpreted as a Josephson-
type quantum oscillation intuitively, is derived as an
effect of explicit symmetry breaking. Charge-current
expression and some possible experimentally observ-
able effects are also discussed. We expect that intro-
ducing the existent chiral symmetry and chiral anoma-

ly will provide a new insight for understanding the
quantum nature of the ICDW system.

It is well-known that a quasi one-dimensional
electron-phonon interacting ICDW system is described
by a two-component Fermi field coupled with a com-
plex scalar field in 1+1 dimensions:
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These fields are related respectively to the nonrela-
tivistic electron Schrodinger wave field 'Ir (x) (the spin
degree of freedom is kept implicitly) and the phonon
wave field u (x) (i.e. , ion displacement) by

+(x) =inst (x)eto" +y (x)e

u(x) =p(x) e+"is+&'(x) e

where Q/2= pF is the Fermi momentum which is in-
commensurate with the lattice spacing and the acoustic
part of the phonon field has been neglected. Follow-
ing the main line of Lee, Rice, and Anderson, 7 namely
inserting (3) into the Frolich Lagrangean and neglect-
ing the terms involving the factor exp[ +igx/it] (in-
commensurability), one arrives at the following quasi
one-dimensional Lagrangean density for the ICDW
system in an external electric field:

L =y'~, 'y+y'[ ~a/at -ea ., „(-ca-/ax —e~/e)]y+(-G/W2)@'(„y, +„@,)y,

where xi, 7 2, and r3 are Pauli matrices, v„ is the Fermi
velocity, G is the electron phonon coupling constant,
and
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In this expression po is the linear density of ion
masses, c0[Q] is the optical phonon frequency, and
u~2=t 8 c2[2go2]/28Q 12n the derivation of (4) from

I

the standard nonrelativistic second-quantized Schro-
dinger field theory, only the electrons near the Fermi
surface are taken into account. In practical systems
the first two terms on the right-hand side of Eq. (5)
are normally much smaller than the third term. But in
this paper we keep them since, as we will see, they
contribute to produce the chiral current of the optical
phonon field.
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It is amusing to note that the resulting Lagrangean is
invariant under the following global ehiral transforma-
tion:

)tl(x)-)t)'( ) =exp[,A]i])( ),

@(x)—P'(x) = exp[2/A]P(x)

Since the Fermi momentum is incommensurate to the
lattice spacing, one cannot distinguish the transformed
system from the original system with a shift in phase
by A for the electron and by 2A for the optical-phonon
wave function:

~( ) ~ ( ) i(gx/2+A)/)i+p (X)e—~(gx/2+A)/&

( ) ~( ) r(g x+2 A)/ )I+@»(X)e—(gx+2A)/f

This is the origin of the chiral symmetry. We should
emphasize a delicate difference between the commens-
urate system and the incommensurate system, the
former having no chiral symmetry. The chiral sym-
metry is a symmetry associated with zero-mass Fermi
fields with left- and right-handed helicity in relativistic
fields, s However, the analog of this symmetry and its
spontaneous breaking appeared already in the BCS
theory of superconductivity. 9 In the present model the
chiral symmetry is also broken to produce the energy
gap near the Fermi surface (Peierls transition). 7 The
Goldstone mode associated with the spontaneous
chiral symmetry breaking describes precisely the
current-carrying sliding CDW. 'p The chiral symmetry
in the ICDW system was first noted by Barnes and
Zawadowski6 although they did not take into account
the phonon field.

The charge and current densities of the system are
given by

p(x) =)l/'(x)it) (x),

j(x) = vF(tl'(x) ~3&(x),

which can be derived from the charge and current den-
sities of Schrodinger theory by use of the same approx-
imation. Since according to the symmetry principle of
the general dynamics, i.e., the Noether theorem, every
continuous symmetry of the system leads to a corre-
sponding conserved current, 8 we note that the charge
and current densities, Eq. (7), are also the Noether
currents of the Lagrangean (4) associated with the
gauge transformation ill (x) )I)'(x) = exp[ iA(x) ]
&&(t)(x). Next we introduce a Noether chiral current
density, which consists of two parts, the electron part

and the phonon part: p( )=p(I)+p~&~, j( =j,(i
+jg, with the phonon part as
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and the electron part of the chiral current being related
to the usual current as

p(,')(x) = v„-'j(x), j,',"= vpp(x),

while the phonon part of the chiral current is one of
the specific features of the ICDW system, where the
optical phonon field participates in the ehiral transfor-
mation.

Even if the chiral symmetry is exact in the classical
sense, it is not exact in quantum theory. Namely, the
anomaly appears as noneonservation of the chiral
Noether current. In this paper we first investigate the
chiral anomaly of the ICDW system and its physical
Imp11cat1ons.

In order to relate Lagrangean (4) to the standard
(1+1)-dimensional relativistic field-theory expression,
we define a set of Dirac y matrices:
—= —i72, y5=—~3, with y" y" +y "y" =2g"" and y5y"
= e""y„,where gi'" is the Minkowski metric and ~"" is
the Levi-Civita symbol. As usual we define Q =Q yp',

then Lagrangean (4) is expressed as

I = —24'/5o '(t +ADA, (10)

where D=Dp+ (G/J2)qexP(l y5X) 'witll Dp=vFy)'
&& (I/1 a„-.~„/e) and ap=- e/avFt, 2"(x) = (el')(x)/
vF, A (x) ). With this notation, the usual current, (7),
and the axial current, (8)-(9)„can be expressed as
j ( )= (T( )y"P( ) nd j"' =j"' ( )+ "'

cl, /A
(
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with j"" (x) = vFj(x)y&y5y(x), jo"" (x)
=(vFp(5)(x),j'5'(x)). Then the relation between
the vector and axial-vector electron current, Eq. (9),
which is specific for (1+1)-dimensional systems, now
becomes

Jei ~ (X) = &~„J (X).

In analogy with the partition function, for the zero-
temperature many-body system, the path-integral
representation of generating-functional formalism al-
lows the discussion of conditions for spontaneous
breakdown of symmetry which goes beyond the one
based on the classical Lagrangean and which is valid to
all orders in perturbation theory. 8 Let Z be a generat-
ing functional defined by the following functional in-

tegral over the fields in Minkowski space:

Z[jj']= ' [ qd][ dX[]yd][ id//]ex [p(i h'/) „' d x(L +J"@+J@')].

Although we write every expression in Minkowski space, the actual anomaly calculations are carried out in
correspondent Euclidean space. Performing an infinitesimal chiral transformation on the integrand of the generat-
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ing functional, and using the chiral invariance of the

action, we derive the anomalous Ward identify

B„(jg)= —5J[A]/hA(x), where J[A] is the Jacobi-
an of an infinitesimal chiral transformation

[d&'][dQ'][dj'1= J[A][d&][dy][djl.

The nonconservation of axial current, the chiral ano-

maly, is essentially due to the chiral noninvariance of
the path-integral measure. " Because of the non-
Hermiticity of the electron propagator in Euclidean
space we are not certain whether the results are regu-

larization dependent or not. So we calculated the
anomaly in two different regularization schemes,
Fujikawa's" and ( function. ' We obtained the same
result, that

B„(jt'(x)) = eE(x)/vrf,

where E is the external electric field and (. . .) means

average over the path integral, i.e., the quantum aver-

age over the ground state. We note that the chiral

anomaly is independent of the spontaneous symmetry

breaking of the system.
Now, we use (11) to obtain
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This equation is a direct consequence of the chiral anomaly in ICDW system. The second term on the right-hand
side of Eq. (14), which is contributed by the spatial and temporal derivative part of the phonon Lagrangean (5), is
usually negligibly small. Therefore, according to Eq. (14), the anomaly can be interpreted as an acceleration
mechanism of the current, which is essentially carried by the sliding CDW in the zero-temperature limit. It is also
worthwhile to note that the response coefficient of Bj/Bt to Eis ev„/nt without any phenomenological parameter.

Moreover, in a quasi one-dimensional system, the Maxwell equation is written as

BE(x)/Bxl' = 4n eN'"a„„j"(x)/uF,

where N'2~ is the two-dimensional electron density perpendicular to the nesting direction within the transverse
quantum coherence length. Thus, combining (14) and the Maxwll equation we obtain
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The first term on the right-hand side of Eq. (15)
shows that the anomaly contributes to a macroscopic
screening effect for the external electric field with the
screening length

electric field. Then,

dp pF
Pl = " -&F 2mb mt

(17)

(= (AU„/4e N~2 )'~2. (16)

In deriving the Lagrangean (4) we neglected the spa-
tial variations which correspond to integral multiples
of 2kF= Q/h' and our result is valid only for spatial
variations much larger than 1/kF. In an ordinary
CDW system 4e2/fvF is order of 1. Therefore, even if
the second term on the right-hand side of Eq. (15) is
negligible, the macroscopic screening effect such as
perfect static diaelectricity can be achieved only when
ihe spacing of the coherent electrons along the nesting
direction is much smaller than that in the transverse
direction.

%e derived the anomaly from the chiral noninvari-
ance of the path-integration measure following Fuji-
kavra. " The discussion is quite abstract. In order to
have some physical intuition, let us discuss the
Thomas-Fermi screening of the one-dimensional elec-
tron gas. Let n and no be the linear densities of elec-
trons with and without small perturbative external

and no= pFO/7', where pF and pFO are the correspond-
ing Fermi momenta. They are related by pFz/

2m+ e54(x) =pF20/2m=p, , where p, is the chemical
potential of the system. Then the Poisson equation
becomes

254 x" = -4~eN"&(n- n&") =g;,'5+(x),
X

where gTF is the Thomas-Fermi screening length
[tuF/4e2Nt2~]'~2 which has exactly the same expres-
sion as that of the anomaly, (16). It is rather interest-
ing to note that the Thomas-Fermi screening is due to
the fact that the Fermi level is imbedded in the contin-
uum of the electronic band; however, for an ICDW
system with spontaneous symmetry breaking, the
anomaly describes the screening effect for the elec-
trons that are in the filled valence band, but are
separated from the conduction band by a Peierls gap.
There is an extraordinary collective degree of freedom
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for the electrons in the ICDW system with spontane-

ous symmetry breaking. Our path-integral calculation

is valid for either case, ~ith or without spontaneous
symmetry breaking.

The above discussion indicates that the anomaly is
essentially the interaction of the external field with
electrons below the Peierls gap (in the negative Dirac
sea). That is the very reason why it describes the ac-
celeration mechanism of the "electrons moved bodily
through the lattice. "0

Another important consequence of Eq. (14) is that
in pure incommensurate CDW systems a charged

V(x) = V, (x)+ e(t«'tl"V, (x)+ e-('«)~J"V'(x)

kinklike self-localized state is absent, which makes the
incommensurate system different from a commensu-
rate system. The argument goes as follows. In case
the system is stationary and under no external electric
field, Eq. (14) is integrated as

(p(x))+ pov1(q'(x)
" )=0. (18)

The second term is negligibly small in a practical sys-
tem, so that (p(x) ) = 0.

Next let us consider the case that an arbitrary static
potential V(x) is present. We again decompose the
potential as

(19)

where V, is real, and V, (x) = V~ (x) —iV2(x) =—g (x)exp[ —i5(x) ). Both the acoustic part V, and the optical part
V, are slowly varying compared to the inverse of the Fermi momentum. The Lagrangean of the system is then
given by

Lv = L + )lt ( V, + V)~) + V2T2)lit,

where L is given by Eq. (4) and

~u4 ~a(AR PR +4L ItL) ~ 4 ( VI~1+ V2~2) P Vo Itit)rtL + V0 PL Ptt

(20)

From now on we shall use the usual adiabatic approximation, namely we neglect the time and space derivatives of
the optical phonon field in the Lagrangean. Then 50 '= —poc02[Q] becomes a c number and the phonon part of
the chiral current has to be neglected. By the same procedure as before we can derive the following form of the
anomalous Ward identity:

1 t)(J(x)) v t)(O(x)) v

u Bt t1x

2&2ao '
((x) (7) (x)sin[X(x) —5(x) ]) v.

This result is derived generally with only symmetry ar-
guments. It describes the coherent response of the ob-
servable quantities j(x), p(x), which is in general
spatial and temporal dependent, to the applied field
and pinning potential without phenomenological
parameters. '3
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