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Universal Term in the Free Energy at a Critical Point and the Conformal Anomaly
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%e show that the leading finite-size correction to lnz for a two-dimensional system at a confor-
mally invariant critical point on a strip of length L, width P (P (( L ), is (w/6)c(L/P), where c is
the conformal anomaly. Equivalently, the leading low-temperature correction to the free energy of
a one-dimensional quantum system is —(m/6)cL (kT)'/fu, where v is the effective "velocity of
light. " The latter formula is used to check recently derived critical theories of spin-s quantum
chains against Bethe-A nsatz solutions.

PACS numbers: 64.60.Fr, 05.30.Ch, 05.70.9k, 75.40.—s

Conformal invariance powerfully constrains the critical behavior of two-dimensional classical (and one-
dimensional quantum) systems. 'i Critical theories are parametrized by the conformal anomaly c, which is the
central charge in the Virasoro algebra obeyed by the energy-momentum tensor:

—i[T(x ), T(x' )]=5(x —x' )T' —26'(x —x' ) T+( c/24m)S"'(x —x' )

[T= (Top —To, )/2]. (1)

(@(x,0)@(y,0)) —e (2)

with /~
= 2n dJP, where d4, is the scaling dimension of

of Q and periodic boundary conditions are imposed on
strip of width P.6 This has been generalized to other
boundary conditions and the interfacial tension (differ-
ence in free energy per unit length for periodic and an-
tiperiodic boundary conditions) has been related to the
scaling dimension of a disorder operator, in some
cases.

In this work, we will derive a simple, general formu-

For c ( 1 a discrete set of values are allowed by unitar-

ity (reflection positivity): c = 1 —6/m (m + 1), m
= 3, 4, 5, . . . . These are realized by the Ising (c = —,

' ),
tricritical Ising (c = —,', ), three-state Potts (c = —,

' ), tri-

critical three-state Potts (c = —, ), and other models. A

complete classification has not been given for c «1
except when a continuous symmetry G is assumed. '4
For G =U(1) we get the Gaussian model (c =1)
which describes a wide variety of critical phenomena
(q =4 Potts model, X- Y model, Coulomb gas, s = —,

'

antiferromagnet, . . . . ) For G = SU(n) the possible
values of c are (n —1)k/(n+k), k=1, 2, 3,. . . .
These describe Wess-Zumino o modelss and antifer-
romagnetic chains (and perhaps also two-dimensional
statistical models). In all the above cases, all scaling
dimensions are known exactly.

Conformal invariance can also be used to study
finite-size effects in two-dimensional statistical sys-
tems6 or finite-temperature effects in one-dimensional
quantum systems. These are related because a
(1+1)-dimensional quantum field theory at tempera-
ture T is given by a Euclidean-space functional integral
on a strip of width P=l/T (in the imaginary time
direction). Correlation functions behave as

!
la for the leading finite-width correction to lnZ:

(lnZ)/L = const x p+ rrc/6p+ g(I/p2). (3)

Here P is the width of a strip with periodic boundary
conditions and c is the conformal anomaly. (The
length L is taken to infinity. ) Equivalently, for a one-
dimensional quantum system we obtain the same for-
mula but now I/P = T and the correction is scaled by
the effective "velocity of light" u (which occurs in the
low-energy excitation spectrum):

F/L = eo —n cT'/6v + 0 ( T') . (4)

(We set ll and Boltzmann's constant equal to 1.) Note
that for the statistical problems (assumed to be defined
on a square lattice with rationally invariant couplings)
the speed of light is v = 1.

The proof of this result rests on the definition of c
as the response of a theory to curving of the two-
dimensional space. If Z is the partition function on a
space with metric q„„then7

—g&" = g&"( T„„)= [R (x) + i ].„5lnZ „c 2

gg~" "" 48~

Here T„„is the energy-momentum tensor and the first
equation follows from the canonical definition of T„„.
8 (x) is the curvature scalar and the second equation
follows because 8 is the only invariant function of the
metric with the right dimension (L ). p, is a con-
stant (of dimension L ) and c is an arbitrary constant
but it can be showns to be the same one which appears
in the Virasoro algebra by variation of lnZ a second
time with respect to the metric:

( T(x) T(x'))
= c/2(x —x') + less singular terms. (6)
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But this leading singularity in the operator product ex-
pansion can also be determined from the Virasoro
algebra and thus the constant c must be the same.
Equation (5) can now be integrated to find

—lnZ = (c/48m )„d x ( —,
' 8, lnp 8, lnp + p2p) + n

Here we have chosen the metric in conformal gauge,
g„„=p(x)5„„,and n is a dimensionless constant. We
assume that the manifold has no boundaries so that
there are no "surface terms" to worry about.

Let us now fix the space I 0 to be a strip of length L
in the xdirection, 0~x~ L (L ~), and width p.
W'e assume periodic boundary conditions in the y
direction. Boundary conditions in the x direction are
immaterial because L ~. In what follows it is actu-
ally convenient to impose Dirichlet boundary condi-
tions in the x direction. Equation (7) would then be
corrected by (L independent) boundary terms. If we
consider an arbitrary manifold I that can be obtained
from I'0 by a conformal transformation w =f (z) then
InZr is given by lnZ on I 0 with a metric p = ~8f/|IZ ~

.
Thus9

lnZr —lnZr

F is universal. [It determines the heat capacity per
unit length, C/L = (n/3) T. ] Another simple check is
the Ising model at the critical point (c = —,

' ). The par-
tition function on the strip is that of a one-dimensional
system of free fermions'0 with dispersion relation

e(p) = 21sinh ' sinp/21= Ip I + O (p').

In the sector with an even fermion number the al-
lowed values of pare (n+ —,')2'/L (n=0, +1, +2)
and in the sector with an odd fermion number they are
n2w/L (n =0, + —1, + —2. . .). However in the
limit I ~ sums over discrete moments are replaced
by integrals so that this feature can be ignored, giving

(10)

Extracting the term linear in T gives

+ in[1+ e IPII l]+O(T )
T "—~2m

note that the second term is lnZ for a relativistic Ma-
jorana fermion (no antiparticle). Evaluating the in-
tegral gives

= (c/487r )J/d'x [—,
' (8, lnp) '+ p, '(p —I ) l.

lnZ
I. T 12

+ + O(T')

~0 m7+6' (8)

The ground-state energy per unit length is ultraviolet-
cutoff dependent but the leading T-dependent part of

Consider now W=e 2 'ii'. This maps 10 onto I',
the annulus of outer radius 1, inner radius
e ' L & 0, with Dirichlet boundary conditions.
(Note that the boundaries of I 0 at y = + p/2 are
mapped onto the same line in I .) We expect lnZr to
remain finite as L ~ (I simply becomes the unit
disk with vanishing conditions at the origin and its
boundary). So we conclude that

InZr,
lim = const xp+L

The first term, proportional to the area, is nonuniver-
sal (depends on p, 2), but the second is universal,
depending only on the conformal anomaly, c.

We can immediately check this formula by applying
it to the Gaussian model with c = 1. The simplest way
of doing this is to use the equivalence of the classical
partition function on a strip of width p with the one-
dimensional quantum partition function at tempera-
ture T = 1/p. Thus

lnZG

L

in agreement with Eq. (3). The equivalent term for
the three-state Potts model, tricritical Ising model,
etc. , can be read off. We see that the conformal ano-
maly c can be directly measured experimentally!

As a nontrivial application of this result let us con-
sider antiferromagnetic quantum spin chains,

0= P „„+), 2=s s+1,
n= 1

+ O(T').
L (1+s)u

Note that the s = —, chain is equivalent, at low ener-
gies, to a free boson as argued long ago. '2 However,
the higher-spin chains have a specific heat which is, in
general, a fractional multiple of that for a free boson,

(14)

where P is some polynomial of degree ~ 2s. It was ar-
gued elsewhere" that for choices of I' such that 0 is
antiferromagnetic and has gapless excitations, it is
described at low energies by the SU(2), k =2s Wess-
Zumino o. model [equivalentiy by the SU(2) Kac-
Moody algebra with central charge k =2s]. For this
model' c =3s/(1+s). The spin chain has a relativis-
tic low-energy behavior with some effective (non-
universal) "speed of light" or "Fermi velocity" u.
This enters the universal term in the free energy in a
manner determined by dimensional analysis. Thus,
the low-temperature heat capacity should behave as
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demonstrating that the higher-s models contain in-
teracting bosons. For each value of s there is one
choice of polynomial I' which renders 0 integrable'3:

2$

P (S S') = X 2satPt, (15)
I =1

where P& is a projector onto total spin f and
at = Xk= il/k. Comparison of the Bethe An-satz solu-
tion with the proposed critical theory is difficult be-
cause one approach gives only the spectrum and the
other only the Green's functions. However, the veloc-
ity of light and low-temperature heat capacity are
known from the Bethe Ansatz, allowing a check on the
critical theory. '4 These are"

V = sr/2 [for all s],

—= —T (s= —),2 ]

L 3

= T (s=1),

I2T2s —i +a„= —,
' T X— " —ln(1 —x) + lnxx 1 —x

t

(s ~ —', );

a„=sin'[sr/2(s + 1)]/sin'[sr (n + 1)/2(s + 1)].
We see that the exact values for s = —,', 1 agree with

our prediction. The indefinite integral cannot be
evaluated exactly and so we have calculated it numeri-
cally for s = —,

' (five significant digits), 2, and —', (three
significant digits), finding agreement with the predic-
tion. (Thus the sum of definite integrals apparently
can be done exactly. )
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