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Coherence and Decay of Rydberg Wave Packets
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Calculations are presented that show the response of an atom to a picosecond laser pulse which
resonantly excites a manifold of Rydberg states. The coherent atomic state that is produced is of
the form of a spatially localized wave packet. The motion, decay, and reformation of the wave
packet are described and related to the complicated quantum beat pattern that appears in the subse-
quent spontaneous decay.

PACS numbers: 31.60.+b, 32.80.—t

The finite duration of a picosecond laser pulse pro-
duces a frequency bandwidth that corresponds to a
spectral width of approximately 20 cm '. When such
a pulse is used to excite an atom to high-lying Rydberg
levels (principal quantum number n ) 30), many lev-
els will be simultaneously and coherently excited. If
the spatial distribution of the electron wave function at
the end of the pulse is calculated, it is found that the
short pulse has excited a well-defined wave packet.
With the proper choice of pulse length and laser fre-
quency it is possible to generate a minimum-un-
certainty packet that oscillates and radiates with many
of the characteristics of a classical electron in a Kepler
orbit.

Rydberg wave packets offer a particularly interesting
example of quantum beats. The rapid time variation
of the spontaneous decay can be interpreted in terms
of the motion and spreading of the packet. Conse-
quently, the classical motion of the wave packet, as
well as the quantum-mechanical spreading, disintegra-
tion, and revival of the wave packet, may be studied
experimentally by measurement of the quantum beat
signal.

Rydberg atomic states have already proven to be a
rich source of experiments which expand our under-
standing of fundamental quantum mechanics. Ha-
roche and co-workers' and Meschede, %alther, and
Miiller have investigated the interaction of a single
atom with the electromagnetic field in a high-Q cavity.
Kleppncr has sho~n that when Rydberg atoms are
placed in a cavity spontaneous emission may be
suppressed. 3 Interesting new types of quantum states
have been investigated by Clark, Korevaar, and Litt-
man, " Cooke and Freeman et al. , and Bayfield and
Pinnaduwage. As we show below, it is possible, with
use of picosecond excitation of Rydberg states, to in-
vestigate some of the fundamental questions of elec-
tron wave packets and spontaneous emission posed by
Schrodinger sixty years ago.

Laser excitation of the Rydberg states is easily de-
scribed by a semiclassical model in which the
interaction-picture amplitude of the ground state is
denoted by ag(t), and the amplitudes of the various

excited states by a„(t). These amplitudes satisfy the
equations

ag ———,'i X—„Q„a„(t)f (t)exp( —I A„t),

a„= —,'i A„ag—(t)f (t)exp(i A„t),

(la)

(Ib)

where the laser field has a pulse envelope f (t ) and the
center frequency of the laser is detuned by an amount

from the transition frequency from the ground
state ~g) to the Rydberg state )n). We have made the
rotating-wave approximation. The coefficients Q„are
just the Rabi frequencies of the various transitions.
For simplicity in our examples we will use the hydro-
genic dipole moments and energy-level spacings, but
the results are easily extended to more complex atoms.
Similarly, for convenience, we will assume that the
ground state is an s state.

The Eqs. (1) are easily numerically integrated for a
particular case. After investigating a number of exam-
ples, we have found that particularly interesting results
are obtained when we use a 6-10-psec (FWHM inten-
sity) pulse tuned so that its center frequency resonant-
ly excites n =85. We will denote this average n as n.
This pulse will appreciably excite five to ten levels
about n = 85. This range of states appreciably excited
is denoted hn We can th. en safely limit the sum over
Rydberg states in Eq. (1) to 60» n ~ 110, and regard
states ~g) through ~n =59) as possible final states for
the spontaneous decay following excitation. After the
pulse the interaction-picture amplitudes will be con-
stant except for a very slow decay due to spontaneous
emission. To a good approximation the time evolution
will be just the oscillatory free evolution. The wave
function for the Rydberg electron can then be written

+„(r,t ) = X„a„(t)exp( —i to„t )u„(r ),

where ~„are the various transition frequencies from
the ground state, and u„(r) are the hydrogenic radial
wave functions. Figure 1(a) shows the evolution of
the wave packet r ~'pa(r, t) ~

after the laser pulse. A
well-defined wave packet is formed; it moves out to
the classical turning point ~here it narrows. If we cal-
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this cycle is just the classical period of an electron in a
Kepler orbit with energy corresponding to that of an
electron in ~n = 85) . In this case the classical period is
93.4 psec. After a few orbits the wave packet dis-
perses, although as wc will see, it later reforms.

If, in our example, we had chosen a longer pulse
and tuned the laser so as to produce a larger value of
n, but with 4n unchanged, the wave packet would or-
bit even more times before dispersing. The reason for
this limiting behavior is that the energy levels become
nearly equally spaced similar to those of a harmonic
oscillator.

Rather than continuing to look at the wave packet
for longer times, we will concentrate on a closely relat-
ed quantity which is morc experimentally acces-
sible —the total power radiated by the atom. The radi-
ation after the laser pulse is due entirely to spontane-
ous emission. (}uantum electrodynamics gives a sim-
ple analog to the classical Larmor formula:

thl'~, ','» "(i g~

0.0 1.0
r in units of the classical turning point

FIG. 1. Rydberg wave packet during its first orbit. In
each curve the packet is labeled by the time that has elapsed,
in picoseconds, from the center of the laser pulse. A 10-
psec pulse (FWHM) was used to excite Rydberg states in the
vicinity of n =85. The wave packet during the first half of
the orbit is shown in (a); in (b) it is shown during the
second half.

culate the uncertainty product for the wave packet near
the turning point we find that Ar hp =0.53)l'. This is
only a few percent 1arger than ihc minimum a11owed

by the Heisenberg uncertainty principle. This value
for the uncertainty product is calculated with the as-
sumption that the laser pulse envelope is a Gaussian.
If instead we take a hyperbolic secant envelope, the
product is increased only to 4r 4p = O.S6h.

After reaching the turning point, the wave packet
reverses its direction and accelerates back toward the
nucleus. This is shown in Fig. 1(b). As the packet ap-
proaches the nucleus it is dispersed by the strong
Coulomb potential. This cycle is then repeated as the
wave packet envelops the nucleus and proceeds back
toward the classical turning point again. The period of

where P is the expectation of the power radiated by the
atom, 4 is the atomic wave function at the end of the
laser pulse, and 'r' is the vector acceleration operator
for the electron. s The colons denote normal ordering. 9

If the power is time averaged over intervals long
compared to a classical orbital period then it is found
that the average radiated power decays exponentially
as though only the single eigenstate ~

n ) had been ex-
cited. The spontaneous-decay lifetime of atom, then,
is given by the reciprocal of the Einstein A coefficient
for the level ~n) . The ratio of the orbital period to the
lifetime is of the order of o(, independent of n The.
exponential decay is negligible in the examples dis-
cussed here, so that to a good approximation r' is sim-
ply the Coulomb force on the electron divided by the
mass of the electron. Finally, the expression for the
power may be written

(t) =P, (0 ~(r), , WR(t)). (4)3ci mr3 mr 3

Here we have explicitly written the acceleration in
terms of the Coulomb force, and have put the time
dependence back into the wave function. The effect
of the normal ordering is to replace 4 with %"R, as de-
fined in Eq. (2). Thus the radiative power goes as the
expectation value on Wtt(r) of the square of the ac-
celeration, which peaks sharply when the packet over-
laps regions of small r.

In Ftg. 2 we have plotted this expectation value of
the radiated power for an interval of 3 nsec which is
approximately 32 of the 93-psec classical orbital
periods. We see that there are three well-defined
peaks in the emitted power as the wave packet pro-
duces a quantum beat once each classical period when
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it passes the perigee of the orbit. After these three beats the packet breaks up, producing a much more complicat-
ed beat. After about 2.6 nsec the beat commences again as the wave packet reforms. The complex pattern which
occurs between the fundamental-beat recurrences is seen to contain quantum beats at twice, three times, and four
times the fundamental beat frequency.

All of this can be understood rather simply. If Eq. (lb) is formally integrated and substituted into Eqs. (2) and
(4) it follows that the radiated power is proportional to the absolute square of the quantity

4(r) = (I/2') X—,
' (6„,—b,„,)exp( —id, „t)F(h„). (5)

Here we have denoted by F(A„) the Fourier transform of the product of the pulse envelope and the amplitude of
the ground state. The evolution of the ground state during the pulse is a simple depletion due to pumping. In
deriving this expression we have assumed that 4n, the range of states appreciably excited, is much smaller than the
average principal quantum number n. In the example of Fig. 2, b, n = 6 (FWHM). When An is this small in com-
parison with n it is useful to make a Taylor series expansion of An,

5„=6+ (n —n )5'+ (I/2!) (n —n )'b, "+. . . , (6)

where 5, 5, . . . are just h„and its derivatives evaluated at n = n If w. e substitute this expansion into Eq. (5) we
find

4(r) = (I/2m)h'exp[i(h —nh') ]rxe xp(in', ' r)F(h„).

Ignoring the initial phase factor, we have a Fourier
series that repeats with a fundamental period To
=2m/b', exactly the classical orbital period. Further-
more, the Fourier series is approximately the inverse
of the Fourier transform F(A„) So the .periodic peaks
in 4(t) are to a good approximation the same shapes
as f(t)ag(t), i.e., approximately the same as the ori-
ginal laser pulse envelope. The spreading of the pack-
et is determined by the next term in the Taylor series.
The packet will reform when this spreading term has
no effect, i.e., when 5"r =2m. Long-term revivals in

the coherence of the atom may be predicted similarly.
For example, at r = n To the second through fourth
terms of the Taylor series for Lk„r are integer multiples
of m, at t = n To the second through the fifth terms of
the series are integer multiples of n. Figure 3 shows
the quantum beats at n To = 57 352.00 nsec.

As the excitation pulse is shortened from the pi-

cosecond regime to the femtosecond regime, we again
find that a well-formed Rydberg wave packet is gen-
erated. The large bandwidth of these short pulses
results in a broad distribution of excited states. In the
case of pulses of a few femtoseconds, the distribution
of excited states runs from n =3 to well into the con-
tinuum of unbound states. In this case An & n and
the Taylor series of Eq. (6) does not converge. The
resulting Rydberg wave packets do not oscillate, but
disintegrate long before reaching the classical turning
point. The wave packet of width Ar has associated
with it a spread in momentum 4p ~hose lo~er bound
is given by the uncertainty principle. Narro~ wave
packets have a large spread in momentum, which is
the reason for their rapid disintegration. '0 Figure 4
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FIG. 2. Intensity of spontaneous radiation. The intensity
is modulated by quantum beats. The excitation is as in
Fig. 1.
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FIG. 3. Approximate revival in the quantum beat pattern.
3The revival occurs at n TO=57352 nsec after the initial ex-

citation of the atom which is described in Fig. 1. To is the
electron's classical orbital period.
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FIG. 4. Rydberg wave packets generated by pulses of
various lengths. Here «7 = 25 and the packets are labeled by

the pulse lengths (FWHM) in femtoseconds. The packets
are as they appear toward the end of the pulse.

correspondence may be found in the position of the
peak of the packet toward the end of the pulse. The
position is that of a classical electron that has been
abruptly, at t =0, given an energy equal to that of the
state (n), and then allowed to travel freely up the po-
tential well from a starting position near the nucleus.
The time t = 0 is the time at which the center of the
excitation pulse reaches the atom.

Classical Kepler mechanics and the quantum theory
of atoms have always looked very different, but Ryd-
berg electron wave packets appear to be a way to pro-
duce quantum states which behave in many ways like
classical states. The time scales and laser parameters
make the area attractive for experimental investiga-
tion.

%e would like to acknowledge the support of the
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shows the wave packets as they appear toward the end
of pulses of various lengths. In the numerical genera-
tion of these wave packets, we used hydrogenic eigen-
functions to n =60, and used the %KB method to
generate as many as 1000 continuum eigenfunctions.
Without the continuum states, the packets would be
severely deformed. The population excited to these
continuum states at the end of the pulse will not
remain bound to the nucleus. %e have not included
multiphoton ionization in these calculations. As the
pulse becomes intense enough to invert the hydrogen
atom in a period shorter than 5 fs multiphoton ioniza-
tion becomes significant, and intensities approach
those at which above-threshold ionization is believed
possible. " In the case of alkali-metal atoms for which
the excitation frequency is smaller, multiphoton ef-
fects will occur at even lower intensities, and corre-
spondingly longer pulses must be used to prevent ioni-
zation.

Although these packets do not oscillate, a classical
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