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How Does the SU(Z) U(1) Symmetry Break in the Early Universe' ?
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The effect of perturbative infrared singularities on the finite-temperature effective potential in

the standard model ~ith a light Higgs boson is investigated. Together with the |"oleman-%einberg
term, it promotes the full-gauge-symmetry breaking. The transition to the U(l) vacuum via quan-
tum tunneling is expected to occur at some temperature —1oo MeV. Ho~ever, &without

knowledge of dynamical details, one cannot conclusively decide whether the chiral or the (full)

gauge symmetry breaks first.

PACS numbers: 12.15.—y, 11.15.Ex, 98.80.Cq

Because of several theoretical interests, symmetry
breaking by the Coleman-Weinberg mechanism has
been studied extensively for phase transitions in grand
unified theories (GUT's) and electroweak theories.
Although some aspects of the models have turned out
to be problematical, details still seem to be obscure. '

In this paper, we are interested in the nature of the
cosmological SU(2) 8 U(1) phase transition which
has also been investigated previously by several au-
thors. Guth and %einberg and Kitten concluded
that, as long as the transition is induced by quantum
tunneling, an extreme supercooling cannot be avoided.
If so, the phase transition would produce too much en-
tropy to be compatible with observation.

Witten3 noticed that the chiral-symmetry breaking
(CSB) by the strong interaction will rescue this situa-
tion: A nonzero vacuum expectation value (pp) pro-
duces a linear term in the effective potential via the
Yukawa coupling. Simultaneously, the gauge-
symmetry breaking (GSB) also occurs with a small
mass scale because pp is the SU(2) doublet. Then,
the nearly symmetric state "rolls" down to the asym-
metric state rather smoothly. This occurs at a some-
what moderate temperature of about T = 200 MeV,
and the entropy is increased by a factor of order

{

105-10~ at this stage of the phase transition.
However, it seems still possible that the

SU(2) 8 U(1) symmetry breaks not by the strong in-
teraction but by the electroweak interaction itself. The
basis of this anticipation is the property of higher-order
contributions to the finite-temperature effective po-
tential. In previous work, the present author noticed
that higher-order infrared singularities inherent in
massless models in general produce contributions
which are smaller than the usual leading thermal-
fluctuation term (e2T2$') but are larger than the
Coleman-Weinberg term (e4@4ln@), @ being the clas-
sical Higgs field. Such contributions yield terms with
sign opposite to that of the leading thermal term. Ac-
cordingly, the width of the potential barrier is de-
creased and phase transitions will be advanced. As the
temperature gets much lower, such an effect is expect-
ed to have increasing significance for phase transitions
in which very-small-field regions of the effective po-
tentials are relevant.

In the following, we study the feature mentioned
above in the SU(2) S U(1) model with a Higgs field
of zero bare mass. The usual one-loop effective po-
tential is given by the sum of finite-temperature and
zero-point-energy (i.e. , Coleman-Weinberg) terms:

oo

V, ($, T) = —
Jl p dp 2ln(1 —exp{—T '[p2+(eP/2sinH)2]' 2})

2m

+ ln(1 —exp {—T ' [p'+ (e @/2 sine cose) '] 'i'} )

+, , 2+, @' In+- —. (I)
512m sin 8 cos 8

Here g is the Weinberg angle, and o = 247 GeV is the
vacuum expecation value of the Higgs field at zero
temperature. As usual, I have taken into account only
the heavy vector bosons, assuming the Yukawa and @
couplings to be small. The leading thermal-fluctuation
term is O(e ), and the Coleman-Weinberg term is
0 (e').

Now, we evaluate the 0(e3) contribution which
FIG. 1. Gauge-boson ring diagrams. Blobs represent

one-loop polarizations.
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diag(H) = (II2, H2, II2, H, ),

1 0 0 0

g22 0 1 0 0

4 0 0 1

0 0 —tanH

—tanH

1

2

H& and II2 are the 0-0 components of the leading po-
larization tensors of the U(1) and SU(2) gauge bo-
sons, respectively:

II, = ( „n + —,—n„)g,'T',

H2 = ( 3 + 3 ng + 6 n H )g2 T'

(3)

(4)

g ~
and g, are U (1) and SU (2) gauge coupling con-

stants and are related to e and 0 as gt = e/cos8 and

g2 ——e/sin8. n~ and n„(=1) are the number of gen-
erations and the number of Higgs doublets, respective-
ly.

The important feature in Eqs. (2)-(4) is that all

contributions from gauge bosons, fermions, and a

Higgs boson work on the 0 (e ) term in a cooperative
way. This is in contrast with the case for the lowest-
order P function in the renormalization-group equa-
tion (RGE), in which the contributions from non-
Abelian gauge bosons and other particles countervail
each other. Therefore, if the lowest-order 0(e2) term
only is adopted as the boundary condition, Eq. (2) will

never be obtained by solution of the RGE even with
the full P and y functions. (Recall that, e.g. , in the
zero-temperature @4 model, the one-loop effective po-
tential can be obtained by solution of the RGE with

adoption of the lowest-order tree potential as the
boundary condition. ') In this sense, (2) is regarded
not to represent merely a higher-order correction to
O(e ) terms in (1), but rather, together with the
0 (e') term, to provide the boundary condition for the
RGE. In fact, the 0(e3) term peculiar to the finite-
temperature field theory has appeared as a result of the
presence of nonzero (electric) masses of gauge bo-
sons, and the information about the masses can be in-
corporated by the boundary condition.

When the finite-temperature part in (1) is expanded
around $ = 0, an 0 (@3) term appears and cancels the
corresponding M3 term in (2). From Eqs. (2)—(4), we
can easily evaluate 0(e ) terms, but here I do not
give their explicit forms. In the small-field region, the
total effective potential without CSB is given by the
sum of (1) and (2).

%e have known3 that, for the tunneling processes

emerges from two-loop diagrams and ring diagrams
(Fig. 1) of zero-energy heavy vector bosons. It is

given by
r T

V, (y, T) = — Tr[(-,' H+ M')'~' M-'], (2)

considered below, the region (e @/ T ) —0 (1) will be
the most relevant, at least at the one-loop level. On
the other hand, when the number of particle species,
and therefore II, is not small, (2) will also play a

significant role in the same region. In fact, II2/3T is
about 0.3—0.4 in the present model. Because of this
rather large value of II2/3T, Eq. (2) as well is expect-
ed to give an important contribution for tunneling.
(Such a situation will also apply to GUT's with rich
particle content. ) Figure 2 gives effective potentials
with and without ring-diagram corrections. (The tem-
perature is 0.00la =247 MeV. ) Apparently, the ring-
diagram effect is large. This example is one manifesta-
tion of our anticipations.

%e evaluate the bounce action which determines
the tunneling probability at each temperature. Before
entering into precise numerical calculations, we quali-
tatively estimate the effect of the ring diagrams from
Fig. 2. For this purpose, we use the approximate for-
mula for the three-dimensional bounce action, A
—D3/~H, where D and H are the zero and the height
of the effective potential. Then, from Fig. 2, we readi-
ly see that the ring diagrams will cause a 40% decrease
of the bounce action.

Now, the stationary and least action A ( T) is expect-
ed to be produced by the spherical and nodeless solu-
tion of the equation

+— (5)
r dr

a
Bqh

( Vi+ Vg) =0,

with the boundary condition dP/"dr ~, 0
——0, r being

the radial coordinate. In solving (5), I render the cou-
pling constants effectively temperature dependent,
since the g's reveal nonnegligible changes of about
20'/0 in a momentum range of 100 GeV-100 MeV.
The parametrizations used are given by

1 8; M~+ ln, i=12,
g,.2 g,.2(M~) 2vr T

8) = (I/12m)(4'+ —,', nH),

82= —(I/12m. ) (22 —4ng ——,
' nH).

I have set M~ = 100 GeV. The result of computer cal-
culations is given in Fig. 3. (Also performed were cal-
culations in which the coupling constants in the
Coleman-steinberg term were fixed to zero-
temperature values. Discrepancies of only about 10'lo

appeared. )
At a temperature T, the transition probability per

unit time and unit volume is roughly estimated to be
T exp[ —A (T)], while the characteristic space-time
volume of the universe is (Mp/Jp), where Mp= 10'
GeV is the Planck mass and p = (24 GeV)4 is the ener-
gy density of the symmetric state at nearly zero tem-
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FIG. 2. The effect of ring diagrams on the effective po-
tential at T=0.001o-. v~ and vI+ t~ are the one-loop and
one-loop plus ring potentials, respectively. In this example,
the temperature dependences of the coupling constants are
not introduced in the Coleman-%'einberg potential. The
values of the parameters are n~ = 3, n~»

——1, g»' (M»» )/
4m = 0.016, and g22 (M»» )/4m = 0.033.

g/ cr

FIG. 3. The temperature dependence of the bounce ac-
tion. All coupling constants have the temperature depen-
dence given by Eq. (6). If the coupling constants in the
Coleman-steinberg term are fixed, then the bounce action
sho~s about a 10% increase.

perature. ' (I assume that the universe remains in the
supercooled state at that temperature. ) The transition
to the U(1) vacuum will occur when (Mp/
jp) T exp[ —A (T)]=1, or 3 (T):—150. Taking
the roughness of our estimation into consideration, we
seek the temperature T' at which A (T') takes values
of 130-170. From Fig. 3, we find 90& T" & 500
MeV. On the other hand, CSB as the origin of the
linear potential is expected to take place at some tem-
perature between 100 and 300 MeV. 3 Therefore, not
having quantitative knowledge of details of the model
including strong interactions, we cannot be decisive
about which of the full GSB and the CSB precedes the
other. However, the present calculation has confirmed
the anticipation that the ring-diagram effects should
not generally be neglected in the consideration of tun-
neling processes.

If full GSB via the formation of bubbles takes place
first at a temperature of a few hundred megaelectron-
volts, then the final entropy will become 10 —10
times larger than the initial one, and the model can be
consistent with cosmological observation. On the oth-
er hand, if CSB takes place first, a linear term will ap-
pear as a result of the nonzero (»I»»f») . Furthermore, if
the Yukawa coupling, and therefore the heavy-quark
contribution which has the tendency to stabilize the
»t»=0 state, still remains small, then full GSB will oc-
cur successively as has been pointed out by Kitten. '
The characteristic mass scale of CSB, —100 MeV, is
much smaller than the temperature of —10 GeV at-
tained after the full phase transition, at which almost
the same amount of entropy will be produced as in the
previous case. Therefore, it seems hardly possible to
determine from observation which of the two possibili-
ties actually occurred in our universe.

Finally, I comment on the work by Flores and Sher. '
They argued that, after CSB, Yukawa coupling to the
top quark also grows along with the cooling of the
universe. Accordingly, the quark-loop contribution

gets large and will modify the effective potential signif-
icantly within the context of the perturbation theory
(m, ) 65 GeV). At zero temperature, a potential bar-
rier at »t»

—1 GeV separates the metastable and the
true vacuum, and will again prevent an early transition
to the true vacuum. For m, & 65 GeV, the barrier is
absent. But the perturbative method seems to break
down in the small-field region, and one can say noth-
ing about the details of the effective potential. Thus,
we might have to give up the picture of the
SU(2)»3 U(l) transition derived by CSB.

Here, we assume that the top quark is light. " If
quark-loop contributions are so small that they do not
construct any barrier, the transition to U(1) vacuum
will be induced by quantum tunneling or by CSB in a
way that we have already discussed. Even if a small
barrier appears as was shown by Flores and Sher under
some hypothetical situation, an instantaneous transi-
tion will occur for the following reason. Since CSB at
the temperature of —100 MeV will occur abruptly in
almost the whole universe (neglecting temperature
fluctuations), the classical field may coherently roll
down the steep linear slope toward the local minimum,
and then begin to climb the opposite slope. It might
well be that the height of this hill is not high. If so,
the classical field will go over the top and then roll
down to the global minimum. The gauge symmetry is
broken without extreme supercooling, and not too
much entropy will be produced.

Thus we have learned that the standard model with
the Coleman-steinberg mechanism can be compatible
with cosmological observation. This conclusion is in
some part strongly based on the significance of the
ring-diagram effect on the effective potential. Since
such an effect is expected to be a universal one, the
author ~ould like to propose the reinvestigation of the
nature of cosmological phase transitions also in other
models (such as GUT's), with incorporation of such
contributions.



V@1.UME 56, NUMBER. 1 PHYSICAL REVIEW LETTERS 6 JANUARY 1986

'M. A. Sher, Nucl. Phys. B1$3, 77 (1981);A. Billoire and

K. Tamvakis, Nucl. Phys. 8200, 329 (1982); A. H. Guth and
E. J. Weinberg, Nucl. Phys. 8212, 321 (1983); J. D. Breit,
S. Gupta, and A. Zaks, Phys. Rev. Lett. 51, 1007 (1983);
J. S. Kim and C. W. Kim, Nucl. Phys. 8244, 523 (1984).

2A. H. Guth and E. J. Weinberg, Phys. Rev. Lett. 45,
1131 (1980).

3E. Witten, Nucl. Phys. B177, 477 (1981).

4K. Takahashi, Z. Phys. C 26, 601 (1985).
5S. Coleman and E. %einberg, Phys. Rev. D 7, 1888

(1973).
6S. Coleman, Phys. Rev. D 15, 292 (1977); C. G. Callan,

Jr. , and S. Coleman, Phys. Rev. D 16, 1762 (1977).
7R. A. Flores and M. Sher, Nucl. Phys. B23$, 702 (1984).
sG. Arnison er al (U.A1 Collaboration), Phys. Lett. 147B,

493 (1984).


