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An empirical interatomic potential for covalent systems is proposed, incorporating bond order in
an intuitive way. The potential has the form of a Morse pair potential, but with the bond-strength
parameter depending upon local environment. A model for Si accurately describes bonding and
geometry for many structures, including highly rebonded surfaces.
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In recent years there has been growing interest in
the structural properties, energetics, and statistical
mechanics of complex systems. For some systems,
such as condensed rare gases, computer simulations
using empirical interatomic potentials have been em-
ployed very successfully to study ordering and melt-
ing.! For semiconductors and other covalent solids,
however, even the statics of relatively simple systems
poses a formidable problem. This paper proposes a
new empirical potential, with which it is feasible to cal-
culate the structure and energetics of complex co-
valently bonded systems. The advantage of this model
potential over traditional approaches is illustrated by
applying it to Si.

For small distortions which do not alter the bonding
topology, simple models such as the Keating model?
can adequately describe the energetics of phonons and
elastic deformations of tetrahedral semiconductors.?
For more drastic reconstructions, the Keating model
can provide some insight into structure,*> but the
bond lengths of rebonded atoms are inaccurate, and
the calculated energies are meaningless. Therefore,
the prototypical covalent solid, Si, has been studied
primarily through difficult quantum-mechanical calcu-
lations,®"!* which are currently restricted to a few
atoms or tens of atoms per unit cell.

Recently, though, Stillinger and Weber!® proposed
an empirical interatomic potential, incorporating two-
and three-body interactions, and used it in molecular-
dynamics simulations of molten Si. Another empirical
potential was proposed by Pearson et all” However,
neither of these potentials attempt to describe accu-
rately the properties of nontetrahedral forms of Si.
Biswas and Hamann'® proposed a more general form
for the three-body interaction, and determined the
eighteen parameters in that model by a least-squares
fit to a large data base of calculated energies of real
and hypothetical Si structures. Equations of state for
these structures were well reproduced. However, rela-
tively few structures outside the data base were calcu-
lated, and so it is difficult to evaluate the generality of
the resulting potential. Highly undercoordinated sys-
tems were apparently not well described.

Here I propose a qualitatively new interatomic po-

tential, which appears to be more transferable and
more accurate than conventional two- and three-body
potentials. The form of the potential is motivated by
intuitive ideas about the dependence of bond order
upon local environment. This is apparently the first
such potential to attempt to incorporate the structural
chemistry of covalent systems, however crudely.
Ferrante, Smith, and Rose!% 2 recently showed that
a large number of calculated binding-energy curves for
solid cohesion and chemisorption could be mapped
onto a single dimensionless curve by use of a three-
parameter rescaling. Abell?! showed that this univer-
sal behavior was well explained by the assumption of a
Morse or Morse-type pair potential, and gave an il-
luminating discussion of the physical interpretation of
the potential parameters, very much in the spirit of the
present work. The potential here is constructed so as
to guarantee?! that this universal behavior is obtained.
Consider the pair potential

E=2Ei=_;—2Vlj» (1)
i =i
Vi=rfe(ry) (4 exp(=\yry)
_B‘jexp(—le’ij)], (2)

where E is the total energy of the system, E; is the site
energy for site i (introduced to make the asymmetry of
Vy more intuitive), Vj; is the interaction energy
between atoms i and j, r; is the distance between
them, and A4, B, \;, and A, are all positive, with
A1 > \,. (The Morse potential is defined by A;=2\,.)
fe is an optional cutoff function to restrict the range of
the potential, discussed below. The first term in (2) is
repulsive, and is interpreted as due to orthogonaliza-
tion, etc.?! The second term is interpreted as
representing bonding. Bj; therefore implicitly includes
the bond order and must depend upon local environ-
ment.2! In the present work, rather than introduce
three-body terms to describe bond-angle forces, etc.,
the form (2) is strictly adhered to. A/l deviations from
a simple pair potential are ascribed to the dependence
of By upon the local atomic environment. Specifically,
the bonding strength B for the pair ij should be a
monotonically decreasing function of the number of
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competing bonds, the strength of the competing
bonds, and the cosines of the angles with competing
bonds. These three factors have been incorporated in
the following simple trial potential:

By= Boexp(—zy/b), (3a)
2y= Dy LW i)/ w (1"

x[c+exp(—dcosf )11,  (3b)

where w(r) is the ‘‘bare’” bonding potential,

w(r)=f,(r)exp(—\,r). Here z; is a weighted mea-
sure of the number of bonds competing with the bond
ij, and b determines how rapidly the bond strength
falls off with increasing effective coordination. The
first term in (3b) is just the ratio of the unscaled bond
strengths of the bonds ik and ij, raised to the power n.
The parameter n thus determines how much the closer
neighbors are favored over the more distant ones in
the competition to form bonds. The final term gives
the dependence on bond angle, which is taken as a
function of cos(B,-,k) to insure the proper analytic
behavior. 8 is the angle between bonds ijand ik. A
simple exponential was tried prior to this Fermi-type
function, but it did not provide sufficient freedom to
describe the entire range of bond angles accurately.
Note that this formulation is not symmetric, i.e.,
Vy#= V. This simply means that the energy associated
with a given bond is not divided equally between the
two atoms in the formal accounting of (1). However,
the potential possesses all physically required invari-
ance properties.

In practice this potential can be more short ranged
than its functional form would suggest, because bond-
ing with more distant neighbors is effectively sup-
pressed by the competition embodied in (3). As a
result, it is reasonable (for large n) to truncate the po-
tential at a very modest distance, e.g., 3 A, as dis-
cussed below. Then the calculation of total energy and
forces requires only of order N? operations, where N is
the number of atoms, as opposed to N> for a general
three-body force. (Biswas and Hamann!® discuss an al-
ternative strategy for obtaining N? behavior.)

The most important quality an empirical potential
should possess is transferability, i.e., applicability to
systems very different from the ones used to deter-
mine the potential. In order to test the accuracy and
transferability of this potential, the parameters have
been fitted to a minimal set of known high-symmetry
structures, and the resulting potential then applied to a
large number of low-symmetry systems for which
reasonably reliable ab initio calculations are available.
Specifically, a Morse potential (A;=2\;) is assumed
for simplicity. Only the first shell of neighbors is in-
cluded, so that the parameter n does not yet enter.
(The cutoff function f, is specified more precisely
below.) The remaining six parameters are fitted to the

following six data: the cohesive energy, lattice con-
stant, and bulk modulus of bulk Si, and the cohesive
energies of the Si, dimer and the hypothetical simple-
cubic and face-centered-cubic structures, as calculated
by Yin and Cohen.® (The parameters are chosen to
reproduce the correct energy at the equilibrium lattice
constant calculated here.) The resulting values of the
parameters are given below. As a first test the result-
ing bond lengths of these structures are compared in
Fig. 1 with the actual values (i.e., experiment?? or ab
initio calculation®) and are found to agree to within 1%
in every case, although the bond length varies by more
than 20% over this range of structures. Figure 1 also
illustrates how both the actual and the model bond en-
ergies decrease monotonically with increasing coordi-
nation. The weak cohesive-energy minimum for the
diamond structure may be viewed as resulting from
the competition between decreasing bond strength and
increasing number of bonds. From this viewpoint, it is
natural that for carbon, the optimum coordination
should fall between 3 (graphite) and 4 (diamond), so
that these are nearly degenerate in energy, while for Si
the optimum coordination is slightly greater than 4, so
that the six-coordinated B-tin and simple-cubic struc-
tures are the nearest in energy to the diamond struc-
ture. This represents a continuous shift toward higher
optimum coordination with increasing ‘‘metallicity,”
which for isovalent tin and lead leads finally to the six-
fold B-tin structure and twelvefold fcc, respectively.

As a further test, the properties of Si in the graphitic
structure are calculated. The resulting bond length of
2.28 A is substantially shorter than for the diamond
structure, in ggod agreement with Yin and Cohen’s’
result of 2.25 A. The cohesive energy of 4.30 eV is in
fair agreement with their value of 3.92 eV, accuracy
levels of ab initio calculations are discussed below. In
addition to the above, the calculated Si, vibrational
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FIG. 1. Cohesive energy and bond energy vs bond length,
for the high-symmetry structures used to determine the po-
tential parameters in Table I. Open circles and triangles give
model and actual cohesive energy per bond, respectively.
Filled circles and triangles give model and actual cohesive
energy per atom, respectively. Structures are, from left to
right, Si, dimer, diamond structure, simple cubic, and face
centered cubic. The lines are spline fits to guide the eye.
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frequency (15.4 THz) and the graphitic Si isotropic
bulk modulus (0.47 Mbar, assuming the same c/a ra-
tio assumed by Yin and Cohen’) are in excellent
agreement with the actual values”?2 of 15.3 THz and
0.50 Mbar. Bulk moduli were not reported for the oth-
er hypothetical structures.

Since tests of the present model’s accuracy rely
largely on ab initio calculations using the local-density-
functional (LDF) approach, it is appropriate to stress
here the uncertainties inherent in those calculations.
For formation energies of point defects in Si, where
several authors have reported painstaking studies,®?®
no one claims accuracy of better than +0.5 eV, and
even this is basically a guess. Initial and subsequent
reports by the same authors have given improvements
in accuracy (i.e., revealed initial inaccuracies) of up to
1 eV for point defects,® and 0.7 eV even for simple
close-packed bulk structures.® This simply reflects the
extreme difficulty of the calculations. More funda-
mentally, the inherent accuracy limits of LDF are not
well known.

Nevertheless, ab initio LDF calculations have been
invaluable in the understanding of the structure and
energetics of semiconductor surfaces and defects. If
the present model can give accuracies even a factor of
2 or 3 worse than the best LDF calculations, that is al-
ready enough to guarantee it an important role in stud-
ies of more complex systems.

To handle more general structures, the remaining
parameters, n and f., must be specified. » was taken
quite large, n=4, to insure very short-ranged be-
havior. Then inclusion of neighbors up to arbitrary
distance only changed the lattice constant, cohesive
energy, and bulk modulus of bulk Si from the
nearest-neighbor value by 2%, —4%, and < 1%,
respectively. This change was due entirely to the
repulsive term in (2). For the cutoff function f, a
smooth but relatively abrupt cutoff around r;=3 A
was used, consistent with the inclusion of only first
neighbors in the determination of the potential param-
eters. The dependence of results here on »and f, was
not systematically tested. The precise form of f, and
the values of all parameters used are given in Table I.

This potential was tested extensively against a large
number of structures. For the B-tin structure of Si,
the resulting cohesive energy (4051 eV), c¢/a ratio
(0.52), and atomic volume (15.7 A3) agree quite well
with the actual values® of 4.36 eV, 0.55, and 15.5 A
respectively. For the unreconstructed Sl(l 11) surface,
a relaxation energy of 0.12 eV/(surface atom) is
found, with a reduction of 29% in the first interlayer
spacing. This is in excellent agreement with ab initio
calculations,'"!2 which give 0.15-0.17 eV relaxation
and 29%-37% interlayer contraction. Optimization of
the Si(100)2x 1 dimer gives a symmetric dimer with
an energy 1.9 eV/dimer below the ideal (100) surface,
and a dimer bond length of 2.29 A, significantly short-
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TABLE 1. Parameters used in the model potential, Egs.
M-@3).

1

A=2280eV, Bo=171eV, A, =2X; A,=1465A"
b=1324, c=65 d=602, n=4,
I, r<R-D,
fe={3—3sinl§7(r—R)/D], R-D<r<R+D,
0, r>R+D,

R=30A, D=02A

er than the bulk bond length of 2.35 A. This is in
excellent agreement with detailed calculations!®!* of
energy (1.7-2.1 eV/dimer below the ideal surface) and
bond length (2.22-2.25 A). In contrast, previous
model potentials have given dimer bond lengths sub-
stantially /onger than the bulk bond length.* 8

As another test, structures and energies of /3 x+/3
arrays of Si adatoms on Si(111) have been calculated,
and compared with the results of Northrup.!> The
threefold top site (directly above a second-layer atom)
is found to be lower in energy than the threefold hol-
low site by 0.78 eV/adatom, and the distances between
the adatom layer and the second full layer are 2.44 and
2.00 A for threefold top and hollow sites, respectively.
These values compare very well with Northrup’s
results of 0.62 eV, and 2.49 and 2.12 A, respectively.

A particularly stringent test of such a model is the
m-bonded chain structure proposed by Pandey!? for
the Si(111)2x 1, surface, and supported by a variety of
experiments. This structure is highly strained, but the
strain energy is compensated for by enhanced = bond-
ing, a rather subtle mechanism. As a result, most
models give an energy higher than that of the ideal sur-
face. The present model gives an energy of 0.12
eV/ (surface atom) below that of the ideal (111) sur-
face. This is a significantly weaker gain than the 0.35
eV found in more accurate calculations.!l"!? Nev-
ertheless, the present model is accurate enough to find
that, despite the large strain, the w-bonded chain is a
reasonable candidate for the Si(111)2x 1 surface.

Results for point defects were reasonably good, with
one serious exception. The energies of the simple va-
cancy and tetrahedral-site interstitial were calculated to
be, respectively, 2.7 and 3.6 eV (3.1 and 3.8 eV prior
to relaxation). This agrees semiquantitatively with ab
initio calculations,®? which suggest a vacancy forma-
tion energy of around 3.8 +£0.5 eV, and around
4.7 £0.5 eV for interstitial formation.

During extensive testing, a single case was found
where the present model yielded unphysical results.
The formation energy of the hexagonal-site interstitial
was found to be essentially zero with the parameters
listed in Table I. The failure of the model for one case
is hardly surprising. Rather, since the parameters were
fitted to the energies of a small number of high-
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symmetry structures, the reasonable accuracy of the
model for the vast majority of cases studied is remark-
able, and indicates an unprecedented level of transfer-
ability. Even for this pathological case, the structure
found here was in quantitative agreement with the cal-
culated!? relaxation of 5% around the interstitial.

The potential can be further improved in a systemat-
ic way. A more flexible form for (3), combined with a
least-squares fit to a large data base (including, e.g.,
the hexagonal interstitial) would certainly yield im-
provements, as would a more systematic procedure for
determining the optimal value of n Also, Abell?!
stressed the advantage of permitting A, and A\, to vary
independently. The cutoff function f, could be omit-
ted (albeit at considerable cost in computational effi-
ciency) to eliminate that element of arbitrariness. And
the extension to multicomponent systems is straight-
forward.

Finally, to illustrate the unique utility of an empiri-
cal potential, I calculate total energies for three models
of the Si(111)7x 7 surface. This problem is at present
completely inaccessible to ab initio techniques. The
three models chosen are those of Takayanagi et al.,?
McRae and Petroff,?* and Himpsel? (see also Ref. 5).
Atomic coordinates were relaxed by use of a steepest-
descent method, and the surface energies compared.
It should be born in mind that the structure obtained
could be a metastable state, and that for such complex
structures the optimization procedure used here is lim-
ited by numerical noise; so the results are only an
upper bound on the energy, even within the present
model. With this caveat, energies for the three
models, per 7x7 cell (relative to the ideal surface),
were — 6.3 eV (Takayanagi), +1.4 eV (McRae), and
+11.9 eV (Himpsel). The difference between the two
most favorable models is only 0.2 eV per nominal sur-
face atom (49 atoms/cell), which might easily fall
within the uncertainty of the model. Nevertheless, the
results certainly favor the model of Takayanagi. The
calculated energy is only insignificantly lower than the
relaxed surface or w-bonded chain, but this represents
an upper bound; in any case, the entropy of this struc-
ture is presumably a criiical factor driving the high-
temperature transition.

The central conclusion of this work is that there are
tremendous benefits in replacing the traditional two-
and three-body expansion of the interaction energy
with a simple pairlike potential (2), where, however,
the coefficient B depends upon the local environment
so as to incorporate the effect of variable bond order.
In this way, structural chemistry is for the first time in-
cluded in a classical empirical potential. The specific
form (3) for that dependence is somewhat arbitrary,
and no doubt better forms will be found, either by im-
proved understanding or by trial and error. Neverthe-
less energies and geometries are described very well
for Si, and the unique transferability of the potential

suggests that it may capture some of the essential phy-
sics of covalent bonding.
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