
VoLUME 56, NUMBER 6 PHYSICAL REVIEW LETTERS 10 FEBRUA.Rv 1986

New Exact Solutions and Bifurcations in the Spatial Distribution of Polarization
in Third-Order Nonlinear Optical Interactions
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Hy means of the Poincare-sphere representation, new exact solutions for the evolution of the po-
larization in anisotropic crystals exhibiting a third-order nonlinearity and subjected to a dc electric
field are found. This allo~s us to discover the existence of bifurcations of the nonlinear eigenpolar-
izations. A stability analysis of the eigenpolarizations shows how the intrinsic instabilities evolve in
the interaction between self-induced and dc-field-induced birefringence.

PACS numbers: 42.65.8p

An intense electromagnetic wave propagating in a
nonlinear medium experiences the effects of a self-
induced birefringence. ' In isotropic media this effect
has long been known as "ellipse rotation, "but only
recently has there been recognized the existence
of unstable nonlinear eigenpolarizations (i.e., waves
which propagate unchanged in the nonlinear medi-
um3) in the case of anisotropic media. 4 The problem
of the interaction of an optical-field-induced bi-
refringence with a dc-field-induced birefringence has
also been analytically solved by Sala for an isotropic
medium. ' This is formally equivalent to the considera-
tion of the presence of linear and nonlinear directional
coupling between two integrated dielectric wave-

guides, ' or the interaction of nonlinear and intrinsic
birefringence in a single-mode optical fiber. s 9

By introducing a formalism based on the Poincare-
sphere representation, 'o we describe the evolution of
the polarization in isotropic or anisotropic nonlinear
media. New analytical solutions are obtained, and a

new type of bifurcations of the nonlinear eigenpolari-

zations leading to spatial polarization instability is

found as a consequence of the competition between
linear and nonlinear birefringences.

We consider a monochromatic electric field E at fre-
quency 0) propagating in the z direction, where x,y, z lie
along the major axes of the crystal (Fig. 1). We fur-
ther choose the z axis so that the section with the
(x,y) plane of the index ellipsoid is circular. There-
fore the crystal has no birefringence, but we allow for
a possible anisotropy in the third-order nonlinear sus-
ceptibility tensor X(i„). The electric field within the
transparent crystal can be expressed as

E= xEt+ yE2= x@'t exp(jkz —j0)r) + y gr'z exp(jkz joir), —

where k ts the linear propagation constant. The nonlinear wave equation for third order effects reduces, in the
slowly varying approximation, to

—j dE/dz= kE, +(2mai /kc )P,(3, i =1,2.

For crystals belonging to the symmetry classes 422, 4mm, 4/mmm, 42m (tetragonal), 622, 6mm, 6/mmm, 6m2
(hexagonal), 432, 43m, and m3m (cubic), "Eq. (2) can be written as

—j dE/dz=kE(+E(X)lE l +2X2lE(3,)l )+X3E;E(3,)E(3 ') i =1,2, (3)

where

X) = (27rkoz/k)XI3)It(~;~, ~, —~),
X2 —(27r k() /k )XI2)2 (Cti~Qj, Ctl, QJ),

X3 = (27rko /k )X%22)(ai,Cd, Qi, Qi); ko = Qi /C

and x;~k~((0i, cu, ru, —cu) is strictly real. For isotropic
media, X3+ 2X2 —Xl = 0.

Under the nonlinear transformation of variables

X

52 = ElE2 + El E2, 53 =j (Et'E2 —Et E2 ),

So= IE, I'+ IE, I', S, = IE, I' —IE, I',
(4)

FIG. 1. Anisotropic crystal referred to its principal direc-
tions (x,y, z). Eq, t and Eq,2 are oriented along the (100) and
(110) directions, respectively.
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system (3) can be written in the compact form

SO=0, S= QNL(S) x S,

where a dot denotes d/dz. The second equation is
known as Euler's equation for the angular momentum
of a rigid body in free rotation about a fixed point.
The motion of the state of polarization as represented
by the reduced Stokes vector S —= (St,Sz,S3) is a non-
rigid rotation of the Poincare sphere St2+S22+S32
= S02 with angular velocity

ON, (S)=—x(0, (1—z) S,, —A. S3, ),

where X—= 2X3 and A. = (X, —2Xz+X3)/2X3. In the iso-
tropic case we have X = I and QNL(S) = (0, 0, —XS3)
(ellipse rotation) .

System (5) admits the invariants

5 tz + S22/X = rt,

St2 + S2z + S3z = R 2. (6)

The intersections of the above surfaces are the closed
trajectories along which the vector S moves. The non-
linear dynamical system (5) is separable; the motion of
St is that of an anharmonic undamped Duffing oscilla-
tor,

St+nS)+PSt3 =0,

where n = X2A. [Rz+ ( I —2A. ) rt], p = 2X2X (X —1).
With no loss of generality, we can choose A. ) 1 (for
example for KTa„Nbt „03, KTa03, and BaTi03, '

A. =1.2-1.3) and Eq. (7) is explicitly solved in terms
of Jacobian elliptic functions as

dependent invariants' and no chaotic motion is possi-
ble however, symmetry-breaking bifurcations and
unstable polarization eigenarrangements exist. '4 In
the anisotropic case„chaotic behavior in the solutions
of (9) has been reported. 4

If we consider centrosymmetric crystals (symmetry
classes 4/mmm, 6/mmm, or m3m), in the presence of
a static field the quadratic electro-optic effect modifies
system (5) to

SO=0, S= Q(S) &&S= [OL+ QNL(S)]XS. (10)

Stocn(z(a+PSto)', m), m =PSto/2(a+PSto), for E~O,

,Stodn(z(p/2)'~ S~o, n), n =2(1+n/pS~g), for E & 0,

where E= —,
' X2A. I t(R2 —A. I t) is the energy of the os-

cillator and for simplicity we chose the origin on the z
axis in such a way that S20= 0 results. The parameters
Sz and S3 are obtained from Eqs. (8) through the in-

variants (6). The resulting trajectories on the Poincare
sphere are depicted in Fig. 2. System (5) has four
stable singular points (centers) located at D& 2

=(+R,0, 0) and D =(0,0, +R), and two un-
stable singular points (saddles) at D5 6= (0, +R, O).4

Whenever two light beams counterpropagate in the
crystal, (5) modifies into the new conservative system

So= 0, S = [QNL(S) + QNL(W) ] x S,

W()=0, —W= [ONL(W) + ONL(S) ] x W,

where W'o, W are associated with the field propagating
in the —z direction through (4) and QNL(W)
=—( [X'+ X(2Z —I) ] W, , (X'+ X) 8,, (X' —X) N', ),
and X'—= 2X2. In the isotropic case, (9) admits four in-

If, for example, a dc electric field of amplitudes Ed, t is
directed along the (100) direction, then OL

("Ill 0 0) and 9f Edcl [X11I1(~~ 0 0) X%1)z(~
cu, 0, 0) ]. System (10) is integrable as follows. The in-

variants of the motion are

S&z +S22/A. +2qtSt/XA. =I 2,

S2+Sz+S2 =R2

and St satisfies the equation

St+ T+ (n'+5)S)+ a St2 +PS)3 = 0,

&chere

u'= X'X [R'+ (1 —2X)I,], r = X~, (R' —2r,~),

5 = 4q2t, a. = 3q t X (2A. —1) .

The solution of Eq. (12) can be expressed through the
elliptic integral

FIG. 2. Trajectories of the polarization state on the Poin-
care sphere in an anisotropic nonlinear crystal.

(13)
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FIG. 3. Trajectories of the polarization in an anisotropie
nonlinear crystal subjected to an external dc field Ed, ~ when

where

0 (x) = E' —r x ——,
' (a'+ 6)x' —o-x'/3 —Px'/4,

E'= —,
'

X A. I'2(R —A. l"2).

A stability analysis of the singular points of system
(10) reveals how the interaction between the dc- and
optical-field-induced birefringence affects the topolog-
ical properties of the polarization trajectories. The
eigenpolarizations S are defined by 0 (S) x S=0, or
explicitly

A

SzS3=0, S)S3+ t)S3 ——0,
(14)

Jh A

S)S2+ t252= 0.

We introduced the two bifurcation parameters r&

=qt/(Xh. ) and rz=q, /X(X —1), r2& rt. Whenever
r& & R„system (10) admits the two stable singular
points (centers) Pt 2= ( + R, O, O) (see Fig. 3). In this
situation the dc-field-induced birefringence dom-
inates, in the sense that the trajectories on the Poin-
care sphere are topologically equivalent to those of a
rigid rotation around St. If the intensity of the optical
field (or the nonlinearity X) is increased up to the
point where tt ~ R, the point P2 bifurcates into an un-
stable saddle point at ( —R, 0, 0) and two centers at
P3 4= ( —

t&, 0, + (R2 —t22 )'~2) (see Fig. 4). A trajec-
tory of unperiodic motion (separatrix) determines a
partition of the Poincare sphere into three domains o
periodic motion. Suppose that the input optical field
polarization is alternately switched between two trajec-
tories arbitrarily close to the separatrix, but situated in
two different domains. Then after some finite prop-
agation length the field will emerge in two nearly
orthogonal polarization states. If the po1arization state
of an intense pump beam (located near the separatrix)
is perturbed through coherent superposition with a
weak signa1 beam, by placing at the crystal output an
analyzer for circular polarizations, we obtain in princi-
ple (choosing the proper interaction length) a com-
plete intensity modulation of the strong wave. This e-

FIG. 4. Same as in Fig. 3, with t~ ( R (left) and t2 ( R
(right).

f t leads to conception of a new class of all-optical de-
ndvices, such as coherent small-signal amplifiers an

phase-sensitive switches or discriminators.
If also t2 ~ R, point P2 bifurcates again into the

stable center at ( —R, O, 0) and two saddles at P5 6

=( —rz, +(Rz —r )' 0) (see Fig. 4). With further
increase in the wave intensity or X, the self-induced
effects dominate and the trajectories in Fig. 4 approach
those of Fig. 2 (with no applied dc field).

The observable features of the bifurcated solutions
are conveniently described by considering the evolu-

, 2, Stion of the components of S. As shown in (1 „
moves in a quartic potential well: Each trajectory on
the sphere fixes the energy E' and the shape of the po-
tential. The bifurcated trajectories contained in a cer-
tain domain on the sphere correspond to oscillations in

the same dimple of the well for St. The information
on the polarization variations along z provided by the
orbits in Figs. 2-4 is usefully complemented by t e
knowledge of the orbital periods. Figure S shows the
distribution of periods for the cases tt = 2R (see Fig.
3) and 2t2= R (see Fig. 4): The trajectories are deter-
mined by the choice of 1"2 or, equivalently, the initial
conditions S(0) = (Sto, 0, + (R2 —Stzo )'~2). Note
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FIG. 5. Normalized period LXR of the orbits on the Poin-
care sphere vs the initial condition S~o/R (52o=0 for
2R =

r& (dashed line) and 2r2 = R (solid line).
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how the period approaches infinity in proximity of the
separatrices.

The case of an electric field Ed, 2 applied along the
crystal direction (110) can be examined by a similar
procedure. Equation (10) holds with QL = (O, q2, 0),
where q2 = 2Ed, 2 XI2)t (to, to, 0, 0).

We limit ourselves here to a discussion of the stabil-
ity of the eigenpolarizations. The singular points of
the system (10) are defined by

A A A A

S2S3+ tt tS3 0, StS3 0,
A

StS2- u2St =0.
The bifurcation parameters are u t

= r)2it X and u2
=q2i'X(X —1) (for & (2, ut ( u2). If ut) R, the
singular points are given by the two centers
Qt 2= (0, +R, 0). When ut~R, 02 bifurcates into a
saddle at (0, —R, 0) and two centers at (0,
—ut, +(R —ut )'I ). Finally, if u2~R, then also

gt bifurcates into a saddle at (O,R, 0) and two centers
at ( + (R' —u,')' ', u2, 0).

The approach based on the Poincare sphere to
analyze the self-induced nonlinearities is powerful
since it reduces the solution of the nonlinear wave
equation to solving a one-dimensional anharmonic os-
cillator [Eq. (7) or Eq. (11)] which can be easily in-
tegrated. Furthermore the display of the trajectories
provided by the sphere conveys all the amplitude and
phase information on the evolution and stability of the
optical field in the nonlinear medium in a very im-
mediate way.

The prediction of bifurcations and instability phe-
nomena of the kind described in this Letter can be ex-
tended to include nonlinear media with a higher de-
gree of anisotropy, '5 such as birefringent or optically
active crystals. The effects of material inhomo-
geneities and of a finite source bandwidth are the sub-
ject of further investigation.
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