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A new phenomenon is reported in which light satisfying a Bragg-type resonance condition gets
strongly reflected by a weak coarse-period (tens of microns) superlattice that is superimposed on a
fine-period (submicron) stratified medium. A coupled-wave theory is developed to describe this

interaction.
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If two waves can interfere to produce real interfer-
ence fringes, then the energy in one of these waves
can be Bragg diffracted into the other by modulation of
the properties of the medium periodically with a period
equal to the fringe spacing. This forms the basis of
many effects from x-ray and electron diffraction in
crystalline media to distributed-feedback lasers and
holography. I have recently shown! that the eigen-
modes of a medium with fine (submicron) periodic
stratifications—the Floquet-Bloch waves—interfere
with each other in a number of curious ways, produc-
ing relatively coarse (tens of microns) real spatial
fringes. Hence one expects that, by superimposing of
a coarse-periodic modulation of the correct type (a su-
perlattice) on the existing fine lattice, Bragg-type con-
version of one Floquet-Bloch wave into the other will
result. The doubly periodic structure that one obtains
is reminiscent of the quantum-well structures now the
subject of intensive study, and indeed the analysis
presented here may be of relevance in that field. A
Floquet-Bloch wave (like an electronic Bloch wave in
an atomic lattice) can to a first approximation be re-
garded as a stable balance of two strong spectral waves,
a balance that can be upset by relatively weak pertur-
bations of the stratified medium in which it exists.
Add to this a phase-matched scattering Bragg-type con-
dition (i.e., make the perturbation periodic), and high-
ly efficient energy conversion between two resonant
Floquet-Bloch waves can result. In this paper, a
coupled-wave theory of this phenomenon is
developed, and a number of new results outlined, such
as large-angle acousto-optical and electro-optical de-
flection of an incident Floquet-Bloch beam. The
analysis has wide-ranging implications for all kinds of
open and guiding periodic structures.

The Floquet-Bloch waves®? are the simplest elec-
tromagnetic disturbances that can exist in a lossless
stratified structure whose effective propagation con-
stant B, is modulated periodically, with an effective
strength M and a spatial period A (=2x/|K|, where
K is the grating vector pointing perpendicular to the
grating planes):

B3(r) =k2IN?*(1+ MycosK 1), (1

where k, is the vacuum wave vector and N the average
effective refractive index of the light. Equation (1)
can apply to a variety of different structures, for exam-
ple, a volume hologram, a crystal used for four-wave
mixing, a single-mode optical fiber with a holographic
grating written in it, a periodic planar waveguide, or
the resonator of a distributed-feedback laser. In the
two-wave approximation,* a Floquet-Bloch wave in any
one of these cases is represented by the superposition
of two spectral waves (eigenmodes of the structure for
My=0) chosen so that they interfere to produce
fringes with a spacing A:

E(r)= & V,exp(—jk, 1), (2)
n=—1
where
k,,=k0+nK. (3)

The quantities ¥, in Eq. (2) are scalar amplitudes of
the two spectral waves in the Floquet-Bloch wave.
The effective value of M, will of course be determined
by the geometry of the structure, and the polarization
states and directions of phase progression of the two
spectral waves. In this way the analysis is kept quite
general, the amplitudes V, being regarded as solutions
of a scalar wave equation with B, as its propagation
constant:

(V2+63(r)E=0. (4)

Putting Eq. (2) into Eq. (4) and setting the coeffi-
cients of like exponentials equal to 0 leads to an eigen-
value problem whose solutions I shall now summa-
rize.! The two wave vectors

kp, = (K/2){kcotdg +§(= 1", n=0,—1, (5

are those of two ‘‘Lorentz points’> (borrowing a term
from x-ray theorists’) in wave-vector space. The unit
vectors X and ¥ point respectively parallel and normal
to the grating planes (see Fig. 1). They define the first
Bragg angle, 6z =arcsin(K/2k,N). In the presence of
finite grating modulation (M, > 0), the locus of al-
lowed wave vectors in the vicinity of the Lorentz
points (obtained by solution of the dispersion relation)
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FIG. 1. The stop band in the vicinity of a Lorentz point
(labeled LP) in wave-vector space. The unit vectors X and y
are oriented respectively parallel and normal to the grating
planes in real space. The wave-vector difference § between
the two arbitrary tie points 0 and 1 determines the orienta-
tion and spacing of the coarse grating planes necessary for
exact fulfillment of the Bragg condition §=0 [from Eq.
(20)]. The double-headed arrows indicate the directions of
the two group velocities.

has the form of a stop band. To evaluate the shape of
the stop-band branches, a new set of axes (£, ) is de-
fined with its origin_at either of the Lorentz points.
When we put k,=kp +£X+n¥ into Eq. (3) and
neglect terms of order higher than 2 in &/k,N and
m/k,N, the locus of the stop band is the pair of hyper-
bolae

(2¢/wgg)? =1+ (2qtanby/wep)?, (6)

where the parameter wgg is the minimum stop-band
width, given by

wSB=M0kuN/2 COSOB. (7)

This is depicted in Fig. 1, where the stop band is
sketched and wgg indicated. The normalized mode
shape {V} of a Floquet-Bloch wave with a tie point li.e.,
the location on a stop-band branch with coordinates
(&, m) associated with a given Floquet-Bloch wave] on
one of the stop-band branches is

Vo +[1— (ntan6p/¢)]"?2
V_, + [1+4 (ntangg/€)1V2)

1

-5 (8

BI(r) = B3(r) + kIN [ Mym, cos(g-r)cos(K-r) + m, cos(g-1)].

where the plus sign refers to a Floquet-Bloch wave
with a tie point on the slow branch and the minus sign
to one with a tie point on the fast branch I[for
(kLpo-i) > 0 these branches are respectively on the

right-hand and left-hand sides of the Lorentz point].
The group velocity v, of any particular Floquet-
Bloch wave follows from the dispersion relation, point-
ing normal to the stop-band branches, and can lie any-
where between + 60 (see Fig. 1). A straightforward
analysis' yields
v, = (¢/N)cosfg[x — §(n tan?0p/£) ], 9
where c is the velocity of light in vacuo. It can also be
expressed in terms of the modal amplitudes (it lies
parallel to the spatially averaged Poynting vector).
Within the approximations of the analysis this leads to

Vg=(C/ka2){V()2ELp0+ Vz_lil_p__l}. (10)

From Eq. (9), the angle « which the group velocity
makes with the x axis (i.e., with the grating lines) is

a=arctan[ — (n/¢)tan?6g). (11)

Our representation of a Floquet-Bloch wave consists of
a periodic transverse amplitude distribution (period A)
progressing in phase along the stratifications, and trav-
eling in the ray direction of its group velocity v, at an
angle o to them. If the energy in a Floquet-Bloch
wave has a finite diffraction-limited angular spectrum
(so that its tie point in wave-vector space becomes an
arc), a Floquet-Bloch beam will appear in real space,
traveling in the direction of its central group velocity.
It is most important in the further development of this
paper that a reader retains this physical picture of the
Floquet-Bloch waves. Any attempt to think more con-
ventionally in terms of spectral waves coupled together
by Bragg diffraction will obscure the relatively simple
conceptual framework in which the following results
are based.

The medium is now taken to have superimposed on
its basic periodicity a coarse grating with period A,
(=2n/|gl, where g is its grating vector). This grating
might be created by an acoustic wave, by an electro-
optical interdigital electrode system, or by inter-
ferometry. The resulting propagation constant 8,(r) is

(12)

This definition allows for modulation both of the fine grating strength M, (via m,) and of the average propagation
constant (via m,). Consider now two Floquet-Bloch waves (distinguished by superscripts 0 and 1 in front of their
parameters) of the unperturbed finely stratified medium described by Eq. (1). Their electric fields take the form

mE (1,"Kq) = ﬁ my. exp(—j™k, 1), m=0,1,

n=—1

(13)
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where tildes are used to indicate that the medium is as
yet unperturbed (i.e., m, and m, are zero). Between
them exists, for all values of n, a small constant wave-
vector difference given by

5="k, - 'k,. (14)

It is this wave-vector difference that generates coarse
interference fringes. 1 shall now assume that & is ap-
proximately equal to g, and invoke Floquet’s theorem
to derive a suitable Ansarz for the perturbed wave
equation

(Vi+pH)E=0 (15)
in the form
E(r) =4 (r)°E(r,%,) +'4 (r) 'E(1,'ky), (16)

k= Lk,c/201% | I'vg DV H(Moma /4) OV _ ' Wo+ 2V W) + (my/2) OV ' W+ 0V _ TV ),

and "p is a unit vector parallel to the group velocity
™v, of the mth Floquet-Bloch wave. The parameter

9=(g—38)-'p (20)

is a dephasing parameter, describing violations of the
Bragg condition. A plot of normalized coupling con-
stants 8«/k,NMym, and 4x/k,Nm, and deflection an-
gles versus ¢/ wgp is presented in Fig. 2 for two special
cases: (i) a Floquet-Bloch wave pair whose tie points
have equal values of 7 (curves a and d), and (ii) a
Floquet-Bloch wave pair whose tie points have equal
values of ¢ (curves b and ¢). Curves a and b are for a
grating with m, =0, and curves ¢ and d for one with
m, =0. The Bragg angle is 40°, yielding deflection an-
gles (curve e in Fig. 2) lying between 0° and 80°.

An obvious situation where one might expect to see
evidence of the Bragg resonances described by Egs.
(18) occurs when an acoustic wave is superimposed on
the finely stratified medium. This would most likely
produce a grating of type m, > 0, the stress field of the
sound causing variations in average propagation con-
stant. The reflection efficiency would be a function of
the acoustic power and wavelength, and extraordinarily
large deflection angles could be observed under the
correct conditions, if we consider that the conventional
Bragg angles for acousto-optical scattering are less than
a degree. In a typical single-mode corrugated Ta,0;s
waveguide,! with M;=0.01, 65=40°, A;=17.7 um,
an effective wavelength (in the guide) of 350 nm, and
symmetrical tie points on one side of the stop band
(i.e., "n= —"'n), a deflection angle of 76° at a coupling
rate of k=037 mm~! can be achieved for m,
=0.0001. I should also comment on the validity of
Egs. (18). If the rays of the two coupled Floquet-
Bloch waves (parallel to the vectors °p and 'p) cross a

598

where

mko="ko + mg, an

and ™A (r) is the spatially varying coupled-wave ampli-
tude of the mth Floquet-Bloch wave. On substitution
of Eq. (16) into Eq. (15), one of two coupled differen-
tial equations can be obtained by our multiplying the
result with 'E*(r, 'ky) (where the asterisk denotes the
complex conjugate), using Eq. (10), neglecting
second-order derivatives of !4, and setting the coeffi-
cients of nonexponential terms to zero. The other
coupled differential equation follows if m =1 is re-
placed by m =0 in the last sentence, yielding

V04 Op+jic' A (v, |/ v, D V2 =0,

(18)
V4 -'p+j0'a + k4 (0 1/I'v, DV =0,

] where the coupling constant « is given by

(19)

large number of the coarse grating planes on their way
through the perturbed medium, then the two-wave ap-
proximation is likely to be valid. This condition can be
expressed as

("p-8)L¥ 27 ("p-L) >> 1,

(2) o]Fue uo1}03[JapP

coupling rates (a,b,c & d)
[e 4}

(@)

FIG. 2. Coupling rates (normalized quantities; see text)
and deflection angles vs ¢ coordinate; see Fig. 1. If we de-
fine the coordinates of the two tie points as (°¢,%9) and
('é,‘n), the curves labeled a, b, ¢, and d represent respec-
tively the following different situations: m, =0, ‘n="u;
my=0,%=1¢ my=0,%="¢, m=0, n="y. The curve
labeled e yields the deflection angle (the angle through
which the group velocity of the light is turned). Because of
the symmetry of the stop band this angle behaves identically
in all four cases.
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where L is the width vector of the supposedly slab-
shaped grating. If, however, the angle between the
waves is very small, very few grating planes will be
crossed, and the two-wave approximation will be in-
valid because of the presence of many high-order
Floquet-Bloch waves neglected in the Ansatz in Eq.
(16). This diffraction regime has similarities with the
Raman-Nath® regime in conventional theories of Bragg
diffraction. Mathematical techniques for the solution
of Egs. (18) already exist, having been developed both
in the realm of x-ray diffraction’ and in the theory of
volume gratings.*® Solutions of Egs. (18) will be ex-
plored in subsequent publications. A final comment is
in order as to the possible relevance of these results to
quantum-well structures. It might be of interest to use
the analysis for the investigation of Jthe effect of very
small-period superlattices ( ~ 100-A period, such as

those encountered in multiple quantum-well struc-
tures) on the electronic band structure. It seems likely
that quantization of the energy levels would result, to-
gether with changes in the refractive index.
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