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Test of Scaling Exponents for Percolation-Cluster Perimeters
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The formula for the fractal dimensionality of the perimeter (hull) of a percolation cluster,

dI = 1+1/v, proposed recently by Sapoval, Rosso, and Gouyet, is shown to imply for the perimeter
scaling exponents r'= 1+2v/(1+ v), o '= 1/(1+ v), and y'= 2. Monte Carlo simulations of very
large perimeter-generating walks yield 7'= 2.143 +0.002 and d~ = 1.751 +0.002, consistent with

these predictions (on the assumption that v= T). The walks are also used to determine

p, = 0.592 75 +0.00003 for site percolation on a square lattice.

PACS numbers: 05.40.+j, 02.50.+s, 05.50.+q

The perimeter of a percolation cluster is the con-
tinuous path of occupied sites at a boundary, which
can be either external or internal to the cluster. Sapo-
val, Rosso, and Gouyet' have recently proposed that
the fractal dimensionality of the perimeter, or hull, is
related simply to the correlation-length exponent by

dJ = 1+ 1/v,

which, with the accepted value 4 v = —', , yields d/'= —, .
This prediction is supported by the direct measure-
ments by Voss' of percolation perimeters, which yield

dJ = 1.76 +0.01, and by measurements by Kremer and
Lyklema6 of an equivalent nontrapping random walk,
which give 1.764+0.01. Sapoval, Rosso, and Gouyet'
consider a diffusion front (which they argue is equiva-
lent to a percolation perimeter), and find 1.76 +0.02.
Theoretical arguments for (1) have recently been
given by Bunde and Gouyet. 7 Perimeter fractal prop-
erties have also been related to the fractal structure of
the growth sites in kinetically growing percolation clus-
ters very recently.

Here I show that (1) has interesting implications for
the perimeter scaling exponents, and report on Monte
Carlo measurements of some of their values. Near
p=p„one expects that the perimeter distribution
function n ', where s' is the number of occupied sites
in the perimeter, obeys the scaling behavior

n, '.
—(s') 'f'(lp —p, l(s') ) (2)

From o. ' and r' all the scaling exponents can be found.
For example, the exponent y' for the mean perimeter
length,

x=—X(s')'n', —lp —p, l-&',

(7)

where x = —'„' is the exponent of s' —s". Both (3) and

(4) can be derived from (7) and the usual scaling rela-
tions for the cluster properties.

If we assume v = —', , the exponents take on the nu-

merical values listed in Table I. For comparison, the

TABLE I. Critical exponents for percolation clusters and
their perimeters (on the assumption that T).

Perimeters

turns out simply to be

y'= (3 —r')/o'=2 (6)

independent of v.
The above expression for y' has been found by

Weinrib and Trugman'2 by considering the relation
between the perimeter properties, which satisfy (2),
and the cluster properties, which satisfy n, —s 'f( I p
—p, ls ). Observing that f' and f are essentially the
same functions, they deduce

r —1 a = ~=x
r —1 cr

(4)

in analogy to the usual cluster scaling, 9 where 7' and
tT' are the scaling exponents. (All perimeter properties
are indicated by a prime. ) Because the typical pe-

I I

rimeter length s' —lp —p, l
'/ scales as ( —(lip

I

—p l
") ~, it follows that I/a'=vs', and therefore,

by (1), that
o.'=1/(1+v). (3)

Also, by virtue of the relationship9 " between dI and
(generalized to perimeters), d/d/' = r' —1, where

d = 2 is the dimensionality, it follows that

7
' —1 = 2v(1+ v).

Clusters

'This work.
bReference 5.

Predicted Measured

15
T =M 2. 143 + 0.002'

1.751 +0.002'

1.76+0.01 ~

2.0+0.1'

'Independent of v.
dReference 13.
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exponents for the cluster properties (assuming
'4) are also listed. The perimeters evidently

have simpler exponents than the clusters themselves.
To test the above predictions for the exponents

values, I have carried out simulations of very large
percolation perimeters on a square lattice, using the al-

gorithm of Ziff, Cummings, and Stell'3'~ which gen-
erates perimeters by a random-walk algorithm. Here I
considered a virtual lattice of 65 536 sites, which were
divided up into 2562 blocks of 2562 sites each, and
used the data-blocking scheme" 3 which assigns
memory to a block only when the walk enters it. The
memory available, about 2 megabytes, allowed walks
of about 2X 106 occupied plus blocked sites to be car-
ried out efficiently. I used an upper cutoff of

1048 576= 220 occupied sites, stopping all walks which
did not close by that number of steps. In all the simu-

lations, the walker never wandered more than 5000
steps in any direction, and so the lattice boundary was

never seen. 30 600 trials were carried out at

p, =0.5928, requiring —100 h of computing time on
an Apollo 460 engineering work station. A typical pe-
rimeter is shown in Fig. 1.

To find the value of r', I kept statistics on the
number of perimeters grown to a size s', putting the
results in bins in the ranges of 1, 2 3, 4 7,
8-15, . . . , 524 288-1048 575. At p„ the probability of
growing to a size s' is s'n, , (s—')' ', so that the

number of clusters in the bin for sizes s' to 2s' —1 is

proportional to (s')2 '. The data for the number in

FIG. 1. External perimeter of a percolation cluster generated by the random-chalk algorithm, containing 328061 total sites,
194464 occupied and the rest blocked. Only the occupied sites are sho~n. Note the holes over all length scales. The max-
imum dimensions are 1291 & 1S70.
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each bin are plotted as squares in Fig. 2 on a log-log
plot, and a straight line is drawn through them with
the predicted slope 2 —7'= ——,'. The data are con-
sistent ~ith this line. To analyze the data it is advanta-
geous to use the upper cumulative distribution

N', = Xs'n', —(s')'
S

because this sum includes the walks that hit the cutoff
2, and therefore has greater numerical significance.
The values of N, ', are plotted in Fig. 2, and the devia-

tion from the line of slope ——, is imperceptible on this
scale. To make that difference visible, (s') t~ %', vs s'

is also plotted in Fig. 2, and excellent agreement with a
horizontal line is noted even on this expanded scale.
A linear least-squares fit of the data of N', over the

range s'= 2'0 to 220 gives r'= 2. 143 +0.002, consistent
with the predicted —, .

In the single-perimeter method used here, there are
no complicating boundary effects, as in finite-size scal-
ing methods. 3'6 ts The advantage in growing single
objects, rather than populating an entire lattice, has
been noted for the growth of single percolation clus-
ters. ' By using an extremely large virtual lattice, one

16,
15

is able to carry out very long walks which make the
corrections to scaling insignificant.

For the 4687 incomplete walks of 22o steps, I also
calculated the fractal dimensionality. The position of
every 64th occupied site was recorded on a list (of
length 16385) and pairs from this list were used to
find the average distances for points separated by 64,
128, . . . , 524 288 = 2'9 steps. These distances, aver-
aged over all 4687 clusters, are plotted as a function of
s' in Fig. 3, a log-log plot, along with a line of slope —, ,

representing df = —, , since (8 ) —(s') f. Alsor 7 2/d
'

shown are the data of Iog2[(s') (A2) I, which
should fall on a horizontal line if df = —,'. A least-
squares fit of the data for s'=2to to 2'9 gives
2/df'=1. 142+0.001 or df =1.751+0.002 consistent
with the conjectured result, and with Voss's measure-
ment. The last point in Fig. 3, representing points
separated by 2'9 steps, falls substantially below the line
because some of the walks are about to close when the
cutoff is reached.

The results found here are summarized in Table I„
along with other known values for perimeter ex-
ponents. The exponent y' was tested in a previous
simulation'3 in which the perimeter-generating walk
was performed at p ( 0.590 and p )0.596 so that all
perimeters closed and the mean size could be deter-
mined.

I end with a discussion of the use of the perimeter
walk to find the value of p, . The walk is extremely
sensitive to p, since for walks of p ( p, the average
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FIG. 2. Measurement of 7. '. The lower plot shows the
data on a greatly expanded scale, and shows a typical error
bar representing the standard deviation of the data. The two

oblique lines represent T
'

equal to ~+ 0.002 and

~ —0.002. The error +0.002 is the standard deviation of
the slopes of consecutive pairs of points in the range
log2s = 10 to 20. The deviation for small s' represents
finite-size, or correction-to-scaling, effects.
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FIG. 3. Measurement of df. Again, the lo~er plot shows
the data on a greatly expanded scale, with a typical error bar
representing the standard deviation of the data; the correc-
tion to sealing behavior is evident for s & 10. The two
oblique lines show what the slopes would be if 2/df' were
equal to ~+0.001 and ~ —0.001, or df'= ~ +0.002.
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TABLE II. The number of external and internal perime-
ters with n, in the range 2'6 to 2'o —1. The error bounds
on the ratio represent the statistical error ( + N '~ ) on the
number of measurements. These results imply p, = 0.592 75
+ 0.07(hp/Aratio) = 0.592 75 +0.00003.

External Internal Ratio

0.5926
0.5927
0.592 75
0.5928
0.5929
0.5930

5000
10000
25 000
10000

9000
5000

153
333
945
372
420
257

l.54 + 0.23
1.16+0.12
0.99 + 0.07
0.91+0.10
0.63 + 0.07
0.53 +0.08

length of external perimeters is more than 100 times
greater than the average of internal perimeters, while
for p & p, it is the other way around'3:

s )ext (s )int g ~p ~

—2

(s') i~' —(s') ' —B ip —p,
(9)

with A =0.5 and B=0.004, where the subscripts +
and — represent above and below p„respectively.
Close to p„ the difference between internal and exter-
nal perimeters should become apparent when the walk
exceeds about B~p —p, ~

2 steps, or 106 steps for
lp —pal=0 00006. Thus, the walks of 2zo steps con-
sidered here should be easily sensitive to this differ-
ence in p.

I thus carried out simulations at p=0.5926, . . . ,

0.5930 keeping track of the direction of closing as well
as the length for those perimeters that closed before
the cutoff of n, = 22o. The number of trials for each
value of p and the number of internal and external
perimeters in the range 2'6 to 2zo —1 are shown in
Table II. From these data, I conclude that p, is
0.59275 with a statistical error of +0.00003 as ex-
plained in Table I. This value is consistent with the re-
cent result of Gebele, zo

p, = 0.592 77 + 0.000 05.
Gebele's calculation required —23 h of computer
time on a CDC Cyber 76 computer, which is hundreds
of times faster than the Apollo computer used in this
work. The six runs here required about 160 h on the
Apollo. The gain in efficiency can be traced to the

large difference between 3 and B in (9), which makes
the perimeter walk very sensitive to p.

The author thanks the College of Engineering of the
University of Michigan for providing the Apollo com-
puter used in these studies.

Wore added. —Very recently„kosso, Gouyet, and Sa-
povalzt have proposed that p, =0.592802 +0.000010.
The result and the result found here differ by slightly
more than the combined error bars.
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