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Limiting Quasienergy Statistics for Simple Quantum Systems
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The limiting distribution P (s) of quasienergy-level spacings is investigated for a quantum model
which is stochastic in the classical limit. The numerical resUlts show that in the case of a strong per-
turbation, the distribution P(s) corresponds closely to the Wigner-Dyson distribution. The rela-
tions between the limiting distribution P(s) and the symmetries of both the unperturbed and per-
turbed motions are independently investigated.
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It has been shown' that there is a correspondence
between the stochastic behavior of a classical system
and the irregularity of the energy spectra of the corre-
sponding quantum system. Energy-level fluctuations
are characterized by many quantities (see, for exam-
ple, Brody et a1.2) but the most commonly used is the
spacing distribution P{s) of nearest-neighbor levels.
This distribution is the main feature of the Wigner-
Dyson statistical description' of such complex sys-
tems as heavy nuclei and atoms. In its simplest form,
this distribution is given by

P (s) = Aspe

where & and 8 are normalizing constants, and p is a
parameter characterizing the repulsion between neigh-
boring energy levels. This level repulsion, which was
discussed as far back as the 1950's, ' is typical for
quantum systems with classically chaotic behavior.
The value of P depends on the symmetry of the uni-
tary random matrices characterizing the system under
consideration.

The distribution (1) with linear repulsion, P=1, is,
in general, confirmed by experimental data for heavy
nuclei and complex atoms. ' There are also a number
of numerical experiments with simple quantum sys-
tems. Recently the distribution {1) with /=2
was found, numerically, by Seligman and Veru

schot2 for a model with two degrees of freedom. How-
ever, the data from most of these experiments are not
statistically conclusive, and it is not possible to assert
with confidence that they agree exactly with the
theoretical dependence (1). The only exception is the
numerical result on the Sinai billiard, '3 for which the
correspondence is remarkably good with a high X2 con-
fidence level.

In this paper the Wigner-Dyson distribution (1) is
shown to be also typical of nonconservative systems
under a time-dependent periodic perturbation. Such a
distribution (for quasienergy levels) appears when the
perturbation is strong, and results from the delocaliza-
tion and ergodicity of the quasienergy eigenfunctions
throughout the momentum space of the system. In
this limiting case, statistical properties only depend on
the symmetry of the given system.

Let us consider, as an example, a quantum rotator
which is subjected to periodic kicks. Its Hamiltonian
has the form (in dimensionless units)

1 t)H = —— + V(0)S,(t); V(0) = k cose. (2)
2 t)0

Here Sr(t) is a periodic delta function with period T
and V(0) is the perturbation potential with strength
parameter k. We are dealing here with a general case
of nonresonant values, where T/4rr&p/q (p, q are in-

1986 The American Physical Society



VOLUME 56, NUMBER 6 PHYSICAL REVIEW LETTERS 10 FEBRUARY 1986

tegers). The special case of quantum resonance, when
T/4m = p/q, was considered by Izrailev and Shepelyan-
sky. ' Numerical experiments' ' with the model (2)
have sho~n that the stochasticity associated with the
corresponding classical "standard mapping" is sub-
stantially reduced by an effect called "quantum
suppression. " It is clear now'6 '9 that this suppression
results from a localization of the quasienergy eigen-
functions in momentum space.

It has been shown20 that the model (2) can be
transformed into another model which relates to the
problem of disordered one-dimensional systems. " For
the case of small perturbation, k & 1, exponential lo-
calization has been numerically observed in a
discrete configuration space. Such a quantum localiza-
tion is analogous to the well known Anderson localiza-
tion22 in a random potential and results in a restriction
of the diffusion for any initially localized state in the
configuration space. Correspondingly, for the given
model (2), the localization of the quasienergy eigen-
function leads to the restriction of the diffusion in
momentum space and, as a result, to a limitation of
the energy growth.

For conservative systems, the behavior of the quan-
tum system is expected to resemble most closely the
stochastic classical motion when all of the eigenfunc-
tions in the signer representation are ergodic and,
therefore, extend throughout the phase space of the
system. 3 This is just the case of "dispersed bil-
liards, "'3 24 26 for which the law (I) with P=1 has
been confirmed numerically. It is interesting to note
that for the "stadion, " 6 unlike the Sinai billiard, '

e"r@,(8) = (exp( —ik cos8)exp( —,
' IT B'/B8')) y—,(8).

there is a noticeable percentage of eigenfunctions
which are not fully ergodic. This is probably the main
reason for the discrepancy between the distribution
P(s) (see Ref. 25) and the theoretical prediction (1).
There, the X confidence level is very poor because of
high values of P (s) at large s.

By analogy with conservative systems it is of interest
to investigate the distribution of spacings P (s) of
nearest-neighbor quasienergy levels. For the quantum
rotator (2) with localization, we expect the repulsion
of quasienergies to be absent. This conclusion is asso-
ciated with the fact that the probability for the overlap
of quasienergy eigenfunctions in the unbounded
momentum space goes to zero (see also Feingold er
gi 26)

To investigate the statistics of the limiting quasien-
ergy spectrum (when all eigenfunctions are extended)
it is convenient to modify our model (2) in such a way
that the momentum space becomes periodic. This
means that the phase space of the corresponding classi-
cal system becomes a two-dimensional torus. It is
known that this does not change statistical properties
of the motion. '8 An essential feature of this new
quantum model is that the number of quasienergy lev-
els is finite.

We first write an exact solution of the Schrodinger
equation for the model (2) after one perturbation
period T:

y(8, r+T)=e ' 'e'e ' " y(8, i).

The equation for the quasienergy eigenfunction @,(8)
can be written from (3) as'

(4)

It is seen that the quasienergies e are generally determined (mod 2m/T) by the eigenvalues h. = exp(i& T) of some
infinite unitary matrix S. The matrix elements S 6 of the operator S =8G [where 8 =exp( —ik cos8) and
G = exp( —,'iT B /B8 )—],in a basis with respect to which the operator 8 is diagonal, are defined by

—ikcos8 i ( T~2~l2 ' ej HS5 q=e

All of the eigenfunctions @, and eigenvalues A. of this infinite matrix S depend on the continuous parameters
8, 86 lying in the interval (0, 27r) and give the total solution of the model (2) with an unbounded momentum
space. In accordance with this, it can be shown that, for a model with a finite number N of quasienergy levels, the
matrix 5 is determined by

A'

l . 2m . T, . 2'S „=8 G „= exp —ikcos m+80 exp i i exp ——i l(m —n) .2X)+ 1 Ã I q, 2 Ã

Here the parameter 80 ranges from 0 to 2~/N
It is clear that the model (6) can be regarded as a discrete approximation to the continuous system (2), (5). The

phase space of this system is discrete both in phase H and in momentum I. In order to keep the symmetry of the
perturbation V(8) = V( —8) the free parameter 80 ~as to be either 80 ——0 or 80= n/N Moreover, the va.lue of N&

in (6) should be N& = (N —1)/2 with N —1 an even integer. Then the expression (6) in the limit N —~ turns
into (S) and for rational values of T/4m= p/q (p and q even, q = N) coincides with the matrix elements of the
system in quantum resonance.
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The dependence of P (s) on k and T was investigat-
ed numerically elsewhere" for the model (6). In par-
ticular, it was found that as k increases, the distribu-
tion P (s) (with M= kT = 5) changes from a Poisson-
type distribution (small k) to the Wigner-Dyson dis-
tribution (1) with r8=2. The limiting (k » N » 1)
distribution P (s) turns out to be very close to (I) with

a high confidence level. The quadratic law of repul-
sion {P= 2) is related to the fact that in Ref. 27 the
general case was considered in which there are no sym-
metries in the matrix S. Specifically, the model there
had a nonsymmetric sum (from 1 to N ) in (6) and ar-
bitrary values of 8o. It corresponds to the case in

which both the unperturbed motion and the perturba-
tion are noninvariant under the transformation8- —H. Also, the motion of such a system is not
time invariant as a result of the absence of any sym-
metry in the matrix S.

Now we focus our attention on the relation between
the limiting distribution P (s) and the symmetry of the
model under consideration. Let us consider, first, the
model (6) with the same symmetries as the original
system (2). Note that for (2) the conditions
Ho(8) = Ho( —8) and V(8) = V( —8) are satisfied
simultaneously. This implies that an additional in-
tegral exists which is a parity. Correspondingly, the
quasienergy eigenfunctions @,(8) have to be either
even or odd: @,(8) = + @,( —8). Hence, the quasien-
ergy spectrum should be treated for these two sets of
eigenfunctions independently.

Figure 1(a) shows the distribution P(s) which was
obtained numerically for this case. To improve the

)20

FIG. 1. Distribution P(s) with s a distance over the unit
circle between the nearest-neighbor eigenvalues g; T
= -rJ3, 80= n//V, 5 = 2n. /)V. The solid curves give the ana-

lytic dependence (1) with P= 1, and the histograms show
the numerical data: (a) Ho= ——, r) /r)8, N = 99, M = 990,
x'q3 = 14.8, rv = 10'/0; (b) 00 ————,

' t)'/88'+ (i/J2) i)/()8,
4 = l99, I= l990, y 27= 34.7, ~ = 150k.

statistics, ten matrices of size /r/ = 99 were considered
for different values in the neighborhood of k
= 20000. Because of the strong sensitivity of the
eigenvalues P to small changes in the parameter k
(with step 4k = 1), these ten sequences of quasienergy
levels can be regarded as mutually independent. Also,
the distributions P(s) for the even and odd eigenfunc-
tions have been summed so that the tota1 number of
quasienergy levels is equal to M =990. A very large
value of k was taken to ensure that all the eigenfunc-
tions were completely extended. From Fig. 1(a) a
rather good correspondence is seen between the exper-
imental distribution P(s) and the theoretical law (I)
for P= 1. The X2 value is equal to 14.8 for 23 degrees
of freedom with a confidence level w = 10'lo. It can be
proven that this model is not only space invariant but
time invariant as well. Correspondingly, the matrix S
has two special symmetries which reduce the total
number of independent matrix elements by a factor of

It makes clear why the distribution P (s) for very

large k is the same as that for the matrix corresponding
to a Gaussian orthogonal ensemble of random unitary
matrices.

The distribution P (s) with linear repulsion appears
also for the model in which only the unperturbed
motion is space invariant [Hp(8) = Ho( —8); V(8)
e V( —8) ]. It is easy to construct such a model if we
assume 8o&0 or n//t/ in (6). In this case, the parity is
not conserved but the system remains time invariant ~

The corresponding symmetry of the matrix S halves
the number of independent matrix elements. It can
then be assumed that, for large k, this matrix 5 corre-
sponds to a Gaussian orthogonal ensemble. The nu-
merical data give X = 35.2 for 27 degrees of freedom
with ttr =14% {for /t/=199, M =1990, k =20000,
T = —,

' ~3, 80= rr/20/r/).
An interesting result has been obtained for this sys-

tem with V(8) = V( —8) but Ho(8)&Ho( —8) In.
this case, the model (6) has been slightly modified to
correspond to the system (2) with a complex Hamil-
tontan H, = --,' a'/a8'+i&a/a8 but with the same
perturbation V(8) =k cosH. Such a Hamiltonian is
characteristic of a magnetic field (see also Ref. 12).
Figure 1(b) shows that this case gives again the distri-
bution (1) with P= I. Note that here both the space
invariance and the time-reversal invariance are des-
troyed [the matrix

f 1 r

T2 m —n
6~~ = exp I I I + I exp I 27K I

] r

has nonsymmetrical form]. Nevertheless, the matrix S
proves again to have a special symmetry and thus,
again, there are only N/2 independent complex matrix
elements. This symmetry corresponds to the conser-
vation of TP in variance of the system under the
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S/a

FIG. 2. The same as Fig. l for 80 = 8 ~ 10
Ho= —

2 8'/(18'+(i/~2) 8/1)8, /V =199, M=1990, X'&7

= 18.9, + = 65'/0. The smooth curve sho~s the analytical
dependence (I) with P = 2.

transformation t ——t together with 8 —8.
Finally, for a system in which the symmetries in

both Ho and V are broken [ V(8) a V( —8) and
Ho= ——, r)2/88'+i7 8/r)8] the distribution (1) is ob-
tained with quadratic (P=2) repulsion (Fig. 2). In
this case, no additional symmetries exist and the ma-
trix S is of the general form with N independent com-
plex matrix elements. It looks like the matrix corre-
sponding to a Gaussian unitary ensemble. 2 4

In conclusion, it should be pointed out that the ma-
trix S, describing the motion of our model with a finite
number of quasienergy levels, unlike that of the
signer-Dyson theory, depends on the parameters k
and T and, in the general case, is not a random matrix.
Only in the case of very large k (and T —1) does the
distribution P (s ) resemble that of the random unitary
matrices. In the other limit (small k (& I) one might
expect (see Berry and Taborzs) a Poisson distribution.
Ho~ever, this question should be considered more
carefully, because there exist numerical experiments
with conservative integrable systems which do not give
exact correspondence to the Poisson law.

The author is greatly indebted to B. V. Chirikov
V. V. Sokolov, and D. L. Shepelyansky for fruitful dis-
cussions and to L. F. Hailo for help with the calcula-
tions.
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