Comment on "Large Long-Time Tails and Shear Waves in Dense Classical Liquids"

Kirkpatrick, in his study¹ of the difference between the observed long-time behavior of the stress-tensor autocorrelation function $\rho_{\nu}(t)$ for a very dense hardsphere fluid² and the theoretical prediction $\rho_{\nu}^{(mc)}(t) \simeq \alpha_{mc} t^{-3/2}$ by conventional mode-coupling theories, asserts that the huge ratio $\rho_{\nu}(t)/\rho_{\nu}^{(mc)}(t)$ \simeq 500 can be understood qualitatively on the basis of an extended mode-coupling (emc) theory.^{3,4} This emc theory incorporates the contributions to $\rho_{\nu}(t)$ resulting from a coupling of the stress tensor to pairs of extended hydrodynamic modes with wave vectors k and $-\mathbf{k}$, respectively.⁴ The main contributions arise from pairs of extended heat modes with $k = |\mathbf{k}|$ near $k_{\rm G}$ where the heat-mode decay rate $\omega_{\rm H}(k)$ shows a sharp so-called de Gennes minimum.⁵ For reduced densities $V_0/V \ge 0.625$ (with V the volume and V_0 the volume at close packing) one has that $k_G \gamma \simeq 6$ and $\gamma/l_E \ge 20$ (with γ the diameter and l_E the mean free path) so that $kl_E \le 0.3$ for $k \simeq k_G.^5$ At finite $k\gamma$, Kirkpatrick uses kl_E as an expansion parameter and calculates $\rho_{\nu}^{(emc)}(t)$ to lowest nonvanishing order in kl_E , i.e., he uses the heat-mode eigenfunction $\Psi_H(\mathbf{k})$ to zeroth order and $\omega_H(k)$ to second order in kl_E . He concludes that for $10 \le t/t_E \le 35$ (with t_E the mean free time), $\rho_{\nu}^{(emc)}(t)$ is about twice as large as $\rho_{\nu}(t)$. We argue here that this factor 2 severely overestimates the difference between the theory and the molecular dynamics (MD) results. To this end we show in Fig. 1 the MD results for $\rho_{\nu}(t)$ with representative error bars at $V_0/V = 0.625$ [cf. Ref. 2] and the theoretical $\rho_{\nu}^{(emc)}(t)$ to lowest order in kl_{E} [cf. Ref. 1], as functions of t/t_E . One sees that theory and MD results agree for $23 \le t/t_E \le 35$ and that $\rho_{\nu}^{(emc)}(t)/\rho_{\nu}(t) \simeq 2$ only when $t/t_E \simeq 10$, so that the emc theory appears to be in semiguantitative agreement with the MD experiment. However, we have the following reasons to believe that contributions to $\rho_{\nu}^{(emc)}(t)$ of higher order in kl_E are significant and therefore have to be calculated before a definitive judgement of the validity of the theory can be made. First, we show in Fig. 1 the theoretical $\rho_{\nu}^{(emc)}(t)$ using $\Psi_{H}(k)$ to zeroth order in kl_E , as in Ref. 1, and the full Enskog values for $\omega_H(k)$ [cf. de Schepper, Cohen, and Zuilhof⁵]. One sees that $\rho_{u}^{(emc)}(t)$ differs significantly from that of Kirkpatrick and agrees better with the MD experiment. Second, the cross kinetic potential contribution $\rho_{\nu}^{k\Phi}(t)$ to $\rho_{\nu}(t)$ vanishes according to the lowest-order approximation used by Kirkpatrick while in fact $\rho_{\nu}^{k\Phi}(t)/\rho_{\nu}^{(mc)}(t) \simeq -14.^2$ The emc contributions to $\rho_{\nu}^{k\Phi}(t)$ of higher order in kl_E are nonvanishing, how-

FIG. 1. $\rho_{\nu}(t)$ at $V_0/V = 0.625$ from computer simulations with 108 (squares) and 500 (circles) hard spheres and from theory using the full (full curve) or approximate (dashed curve) values for the heat-mode eigenvalue $\omega_H(k)$, as functions of t/t_E .

ever. Finally, as discussed before,⁴ one of the contributions to $\rho_{\nu}^{(\text{emc})}(t)$ of higher order in kl_E decreases Kirkpatrick's result already by about 30%. Thus, no large discrepancies exist so far between theory and experiment and a full quantitative description of anomalous long-time behavior of $\rho_{\nu}(t)$ might well be possible on the basis of the extended mode-coupling theory.⁶

- I. M. de Schepper and A. F. E. M. Haffmans Interuniversitair Reactor Institut NL-2629 JB Delft, The Netherlands
- H. van Beijeren

Institut für Theoretische Physik Rheinisch-Westfälische Technische Hochschule D-5100 Aachen, Germany

Received 18 November 1985

PACS numbers: 47.35.+i, 05.20.-y, 05.60.+w, 62.10.+s

¹T. R. Kirkpatrick, Phys. Rev. Lett. 53, 1735, 2185(E) (1984).

²J. J. Erpenbeck and W. W. Wood, J. Stat. Phys. **24**, 455 (1981).

 3 I. M. de Schepper and E. G. D. Cohen, Phys. Lett. **68A**, 308 (1978).

⁴H. van Beijeren, Phys. Lett. **105A**, 191 (1984).

 5 I. M. de Schepper, E. G. D. Cohen, and M. J. Zuilhof, Phys. Lett. **101A**, 399 (1984), and Physica (Amsterdam) **127B**, 282 (1984).

 6 T. R. Kirkpatrick and J. C. Nieuwoudt, Phys. Rev. A (to be published).