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Periodic Quasicrystal
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It is shown that the icosahedral quasicrystal and the recently observed T phase are closely related
to each other. The latter is a periodic stacking of two-dimensional quasilattices with mirror sym-
metry. Their diffraction patterns, though appearing very different, can be indexed by a set of pri-
mary vectors that are only small deformations of each other. However, because of the mirror sym-
metry, their quasilattices are not related by small deformations. A calculation based on the model
free energy of Kalugin er al. shows that this periodic quasicrystal is very competitive with (and in
fact energetically more favorable than) the icosahedral quasicrystal.

PACS numbers: 61.50.Em, 61.55.Hg, 64.70.—p

The recent discovery' of Al-Mn alloys with diffrac-
tion patterns containing sharp Bragg peaks with
icosahedral symmetry has found an explanation in the
suggestion that although they are positionally ordered,
that ordering cannot be periodic in any direction. Such
structures have been called quasicrystals. Real-space
structures for such quasicrystalline lattices have re-
cently been proposed by a number of people.?> A
particularly powerful and suggestive approach has been
the “‘projection method,’’3~> which constructs lattices
by projecting higher-dimensional periodic structures
into suitably chosen three-dimensional subspaces.

More recently it has been discovered that there is
also a phase of these alloys (referred to as the T
phase”’® or ‘‘decagonal phase’’’) that has a diffraction
pattern characteristic of a periodic stacking of two-
dimensional quasicrystalline structures. I shall refer to
such atomic arrangements as ‘‘periodic quasicrystals,”’
in contrast to the ‘‘icosahedral quasicrystals’® which
lack periodicity in any direction. In addition to the
periodicity, the diffraction pattern of the decagonal
phase also has a plane of mirror symmetry. The decag-
onal phase is a periodic quasicrystal with mirror sym-
metry.

In the first part of this paper I show that there is a
periodic quasicrystalline structure, referred to as the
pentagonal-bipyramid (PB) structure, that (1) has all
the observed symmetries of the decagonal phase, (2)
has a k-space structure generated by a set of ‘‘pri-
mary’’ vectors (defined below) that is only a small de-
formation of the corresponding icosahedral set, and
(3) is, at least within the simple Landau theory of
Kalugin, Kitaev, and Levitov,’ energetically more
favorable than the icosahedral structure.

In the second part of the paper, I show that although
the primary vectors of the PB quasicrystals and the
icosahedral ones are related by small deformations,
their real-space lattices are not—as a result of the mir-
ror symmetry of the PB structure. A nontrivial exten-
sion of the projection method is developed to con-
struct and to reveal some rather subtle properties of
the real-space lattice.

The diffraction patterns of icosahedral quasicrystals
can be indexed by a set of six ‘‘primary’’ vectors {k,].
The densities of these structures are of the form

. 5
p(r)=z,‘d1ke'k* "+ec., k= 2 NK,, (1)
n=0

where A=[XAg,\|,...,As], and A, are integers. The
set {k,=kal} and its negative are the vertex vectors
of a regular icosahedron,

aJ=12, al=cos#z+sindR"k, )
n=1toS5,

where R is a rotation about the Z axis by 27/5, and
cosd = 1//5.

The periodic quasicrystals considered here are speci-
fied by the following [‘‘pentagonal-bipyramid’’ (PB)]
set of primary vectors {k,= ka,}:

ay=2cosaZ, a,=cosaZ+sinaR"X, (3)
n

n=1toS.

The vectors {a,) and {ag—a,} are lower and upper
edges of a pentagonal bipyramid. Densities (1) gen-
erated by the PB set are clearly periodic along z with a
period I'=2#/(kcosa). Since 2cosd=2/~/5~0.9,
there is a range of angles « in the neighborhood of
a=6 for which the PB set (3) is very close to the
icosahedral set (2).

From the icosahedral set (1), one can generate a dif-
fraction pattern with icosahedral symmetry by making
wave vectors of the same length to have the same am-
plitude, (e, l\|=1w, | if |ky|=1k,.[). Under this
construction, the PB set will generate a structure, re-
ferred to as the pentagonal-bipyramid (PB) structure,
whose diffraction pattern has the same symmetries as
the one observed in the decagonal phase: a tenfold
axis z, and two sets of ten twofold axes { £ R"x} and
{+R") for n=11t0 5. The xy plane is a plane of mir-
ror symmetry.

To demonstrate the plausibility of this periodic
quasicrystal, I have used the model of Kalugin, Kitaev,
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and Levitov? to study the energy barrier between the
isotropic phase and the PB structure and compared it
with the icosahedral case. In this model, the free ener-
gy [to the third order in density p(x)] can be written
as

F=f drlp=p% +y 3 (k/ao— D2l @)

y>0,

where p(r)=3,e®"p,. For very large y, the last

term tends to lock the wave vectors at gg. Even when
y is large, however, the free energy can favor the ap-
pearance of many wave vectors all close to g that form
many triangles, if the gain in bulk energy through the
p3 term can compensate for the extra ‘‘elastic’ energy
).

Several authors® pointed out some years ago that for
infinite locking (y =o0), the structure with smallest
energy barrier against the isotropic phase (and hence
most likely to appear from the melt) is a bce structure.
Recently, Kalugin, Kitaev, and Levitov,? by taking the
edge and vertex vectors of the icosahedron as the only
k vectors in (1), showed that this icosahedral structure
has an energy barrier lower than that of this bcc struc-
ture for y < 69. (I obtain 69.52.) In this case, the
icosahedral vertex and edge vectors together can form
triangles that would be absent if only one type of vec-
tor were considered. Because their lengths only differ
by 5%, the cost in elastic energy is moderate even for
large values of y (y < 69).

Since the PB set (3) can be viewed as a slightly dis-
torted icosahedral set for a range of angle «, one might
think that the PB structure in k space is simply a dis-
torted (edge and vertex) icosahedral structure and
therefore has the same bulk free energies and similar
elastic energies. This is not true. The mirror sym-
metry of the PB structure demands an additional set of
vectors, which can form many more triangles while
costing only a small increase in elastic energy. In fact,
there is a PB structure that is favored over the (edge
and vertex) icosahedral structure for all values of y
where the icosahedral structure is favored over the
bcc.

To understand the relations and difference in energy
between the icosahedral and PB structure, it is useful
to group the vertex and edge vectors of an icosahedron
in the following five sets, with the numbers of vectors
in each set denoted as 2n;, i=1 to 5 (see Fig. 1):
(S1), the upper and lower ‘“‘umbrella’ vertex vectors,
+al, n=1t1to0 5, n;=5; (S2), the “‘backbone’’ vertex
vectors, *a, ny=1; (S3), the upper and lower ‘‘cap”’
edges, *(aJ—al), n=11t0 5, ny=S5; (S4), the upper
and lower horizontal ‘‘ring’’ edges, +(al—a$,.),
n=1 to 5, n,=35; (S5), the ‘“‘waist’”> edges, =+ fa,(,’
—(—al,+3)], n=1105, ny=>5. There are altogeth-
er 42 vectors (thirty edges and twelve vertex vectors).

FIG. 1. The vertex and edge vectors of an icosahedron
are separated into five sets S1 to S5, represented by five dif-
ferent kinds of straight lines. S6 is the mirror image of S5.
(Not all S6 vectors are shown). The cap vectors cl and c2 in
S3 and the ring vector b in S4 are repeated at the bottrom of
the figure to show the additional triangles formed by the S6
waist vectors.

With these two sets of vectors, icosahedral symmetry
implies two amplitudes, one for the vertex set
{S1+S2}, and another for the edge set {S3 +S4 +S5}.
One can form a PB analog of the above set of vec-
tors by replacing the a,’s by the a,’s. Immediately,
one notices that the sets of umbrella vectors S1 and
cap vectors S3 are mirror images of each other about
the xy plane, while the sets of backbone vectors S1 and
ring vectors S4 are mirror images of themselves. The
waist vectors S5, however, are without a mirror image.
In order to restore the mirror symmetry, one must in-
clude the image of S5, denoted as S6, which can be ex-
pressed as the differences between the upper and
lower cap vectors. There are ten vectors in S6,
2ng=10. The total number of vectors is now in-
creased from 42 to 52, as compared with the
icosahedral structure. This set S6, when included, can
generate additional triangles through the combinations
of two S6 waist vectors and one S4 ring vector, as well
as one S6 vector and two S3 cap vectors (see Fig. 1).
These six sets of vectors demand four different am-
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plitudes {; (i=1 to 4), one for each of the following
sets: Y1={S1+S3}, Y2=(S2}, Y3=(S4}, and Y4
= {S5+S6}. Taking the “‘trial”> density to be p(r)
=3 Engje”wf", Jj=11to 4, with v, in Y}, and k the
length scale of the wave vectors, I have found that the
energy barrier of the PB structure is lower than that of
the becc for y < 74.48 with optimum values cosa
=0.4981 and k/qo=0.9948. Moreover, the PB barrier
is lower than the icosahedral one® for all values of y
where the icosahedral barrier is lower than that of the
bece.

That the crossover value of y of the PB structure (to
bee) is greater than that of the icosahedral structure
may well be due to the truncation in the density waves
in (1), or it may be a peculiar property of the model of
Kalugin, Kitaev, and Levitov.> However, the present
results certainly suggest that the two structures will be
competitive with each other, so that more sophisticat-
ed energy calculations ought to take the PB structure
into consideration to be complete.

Next, I consider the quasilattice of the PB quasicrys-
tals. In this case, a generalization of the projection
method is necessary to incorporate the mirror sym-
metry of the PB structure. An application of the
method below shows that all points of the PB lattice lie
on a set of equally spaced lattice planes with a spacing
equal to one half of the period. This periodic stacking
of alternating layers also implies an alternating layer
structure in the diffraction pattern, which is observed
in experiments.’

Scheme of projection.—Given any primary set (K,,
n=0 to 5} that spans the 3D physical k space, one can
find a set of 3D vectors {q,,n =0 to 5} in an orthogo-
nal k space, so that the direct sums k, & q, form a
basis in a 6D k space. This 6D basis also determines a
basis {A, ® B,} in a 6D real space (which is a direct
sum of the 3D real space and a 3D orthogonal space)
through the completeness relation

5
(A, ® B,)*(k, D q,)=2md*, (5)
n=0
where u and v denote the six directions in the 6D real
space. In terms of the 3X3 block components, this
matrix equation becomes

S S

S, (4,)(k,) =3, (B,)!(q,)/=2md", (6)
n=0 n=0

S S

3, (4,)(q,)/= 3, (B,)!(k,)/=0, (7)
n=0 n=0

where i,j denote the x, y, and z directions. The lattice
vectors of this 6D real-space lattice are 4, @ B,,
where A‘r=23=07nAm BT=23=0TIIB'I’ =7,
71, ...,Tsl, 7, integers.

A quasilattice is defined as the projection onto the
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3D real space of those 6D lattice points which lie in-
side a specified region in the orthogonal space,

pa(r) =2, 8(r—A,)f(B,), (8)

where f, referred to as the ‘‘acceptance’ function, is 1
or 0 depending on whether B, lies inside or outside the
specified region in the orthogonal space. Equation (8)
can be rewritten as

palr) = Ehf &*r f(r)explik,-r+iqy-1r), (9)
which is of the form (1) with the identification
on=f &r f(Dexpliay 1) =F(a). (10)

As we shall see below, the translational and mirror
symmetry of the PB structure imposes stingy con-
straints on its acceptance function.

Choosing the real-space vectors {A,} for the PB
structure.— As seen from the preceding Section, the
choice of {q,} is not unique. For the icosahedral
quasicrystal, k0= ka?, it has been shown* that the 6D
vectors k2 @ q? will be proportional to an orthonor-
mal set if {q)} are chosen to be @§= —kJ, a2=k,,),
where ( ) means modulo 5. Equation (8) then implies
A= (27/k)(al/2), and B}= — AJ, B{= A},,).

For the PB set, (3), the choice of {g,} is again not
unique. As a natural generalization of the icosahedral
case, [ choose

qo= — ko, q,,=k(2,,), n=1toS5. an
Equation (8) then implies
Ao= (2m/4k cosa)z=(T'/4)Z, (12)

A,=+(T/4)(2+4cotaR"™%),

and B0= - Ao, B,,= A(z,,).

Symmetry constraints on f.— As seen from Eq. (8), to
generate a quasilattice, one needs both the 6D lattice
A, ® B, and the function f. Since the magnitudes
|y,| must be the same for all k,’s that are related by
symmetry operations, fin (10) must have a functional
form to preserve this symmetry. In the icosahedral
case, this symmetry is guaranteed by choosing f to
have icosahedral symmetry. In Ref. 4, fis taken as a
triacontahedron 33 ¢ x,BY, 0 < x, < 1, with a diame-
terz- (—BJ+3:-BY).

From the icosahedral quasilattice, one can generate
a periodic quasilattice by replacing all the icosahedral
lattice vectors 33_oA,AY by their PB analog
Sa2=oApA, [with A, given by (12) and (13)]. This
amounts to projecting the 6D oblique lattice A, ® B,
with an acceptance function f which is a distorted
triacontahedron, i.e., one that is generated by {B,)} in-
stead of {BY}. In fact, f has a simpler form. Since
z-B, is an integer multiple of I'/20 [as seen from
2-B,=(—719++3,7,)A¢ and A,=T/4], the orthog-

n=1t5, (13)
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onal vectors B, all lie on a set of disks which are the
intersections between the distorted triacontahedron
and a set of equally spaced planes perpendicular to the
z axis and with a spacing I'/20. Since Z is a fivefold
axis, all disks have pentagonal symmetry. Moreover,
the diameter of the distorted triacontahedron is
z-(—By+3,-1B,)=34,=3I'/4, and there are fif-
teen such disks. The function f is therefore of the
form

f(0)=3,8(z=Tm/20) f,,(xy), (14)

where m is an integer labeling the disks. The ampli-
tude ¥, is, by (10),

Ur= 3 expligi Tm/20) fp(q)t ),

where f,, is the Fourier transform of £,,.

This is probably the simplest way to generate a
periodic quasilattice from the icosahedral one. Howev-
er, the diffraction pattern of this periodic quasilattice
does not have a plane of mirror symmetry and is there-
fore not appropriate for the decagonal phase. To see
this, and to understand the proper way to restore the
mirror symmetry, we note that if k, and k, as generat-

(15)

ed by (3) are mirror images, the corresponding q, and
q,  need not be; though it is always true that qy —q, . is
an integer multiple of ky. [For example, while the
vectors k; and — kg + k; are mirror images, the vectors
q;(=k;) and —qp+q;(=ky+k;) are not.] The am-
plitude ¥, is therefore (15) with an additional phase
factor exp(iskoI'm/20) =exp(idmwsm/20) in the sum,
where s is an integer depending on the A’s. In order to
satisfy the symmetry constraint |, |= |y, .|, we must

have m = 10p, pinteger, and
f(r)= EPB(z—Fp/Z)fp(x,y).

Thus, the mirror symmetry eliminates many of the ac-
ceptance disks. (Only two disks in the distorted
triacontahedron are kept.) The resulting PB quasilat-
tice cannot be obtainable from the icosahedral one by
small distortions.

The layer structure of the lattice and the diffraction. —
By (8) and (16), a lattice vector A, must have an
orthogonal partner B, satisfying (I'/2)p=1%'B,
=(—719+%+3,=-17,)A4y. Since Ay=T/4, we have
233_y7,=5(rg+2p), which can only be satisfied for
T0=2u, 33— 17,=5(u+p), u integer. We then have

(16)

A, =A(rog++3,-17,) =3 Q219+2p) =T (u+ +p).

The lattice points are therefore confined to a set of planes perpendicular to the z axis separated by half the period.
The diffraction pattern can be obtained from (10) and (16), which implies

U= zp(even)]P(kkL ) +6Xp(i27rk{/k0) 21,((“_‘(1)_/7,;(/“L ),

where the relations gq,- =k and exp(i2wki/kg)
=exp(im 33-1\,) have been used. Since Z-k, is an
integer multiple of ky/2, ¥, alternates between two
different values. The diffraction pattern along an axis
in the xy plane will therefore have an alternative layer
structure. In the decagonal phase, there is in fact a
prominent alternating layer structure in the diffraction
pattern along one of its two sets of twofold axes.5’
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