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Can the Skyrmion Model be a Good Description of the Nucleon?
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The nucleon mass is computed in the skyrmion model. Starting with a parameter-free nonlinear
chiral Lagrangean containing the effects of heavy mesons (p, o., co), we find that the computed
mass is a factor of 2 too large compared with the measured value.
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In 1960, in a very original paper, Skyrme proposed a
unified field theory of mesons and bosons by consider-
ing baryons as soliton solutions of a nonlinear meson
field theory. His main motivation was to give a prop-
er treatment of an extended object. Skyrme's idea was
recently revived by a number of people. The real
impetus in this direction is due to Mitten who pointed
out that in the limit of large number of colors, N„
quantum chromodynamics (QCD) may be approximat-
ed by an effective theory of mesons in the form of a
nonlinear chiral Lagrangean and baryons could emerge
as soliton solutions of this effective Lagrangean. If
this idea is correct, static properties of baryons can be
computed in terms of a few parameters completely
determined by low-energy meson physics. '

The purpose of this note is to test Skyrme's idea by
calculating baryon masses and some other static prop-
erties, using the low-energy effective Lagrangean
which, as mentioned above, contains no free parame-
ters. Our effective Lagrangean, apart from the stand-
ard minimal terms (which can be derived from the
nonlinear cr model), in the SU(2) S SU(2)-symmetry
limit contains the two most general quartic terms in
derivatives of the pion field (denoted as the Skyrme
and the non-Skyrme terms) and a term having six
powers of the field derivative obtained by the contri-
bution of the co field in the Lagrangean. In a previous
paper, ' it was pointed out that the strength of the
Skyrme term can be evaluated easily from the heavy-
p-meson term in the Lagrangean. The non-Skyrme
term corresponds to the contribution of the o- meson
in the Lagrangean. In the same manner, because of its
nearly degenerate mass with the p, the ~ terms pro-

duce an important contribution and must be included
in the Skyrrne Lagrangean. As will be clear below, the

p and cu terms stabilize the soliton and make a positive
contribution to its mass while the o- destabilizes it. In
previous works the soliton is stabilized either by the
Skyrme term6 or by the cu term~ alone. This is not a
correct treatment because all the heavy-meson contri-
butions are equally important and must be included in
the full Lagrangean as explained above.

Our approach takes into account the effects of the
coupling of the p, cu, and a fields with the pion sys-
tem. It is essentially a pole approximation with the
momentum dependence in the propagator (which
gives rise to a higher-derivative expansion) neglected.
In this way the energy of the skyrmion is obtained by
solving the usual Skyrme Lagrangean without the p,
cu, and o. fields.

Throughout this note we neglect the 3
&

contribution
to terms with six powers of the derivative of the pion
field, because the A t pn squared coupling constant
is I order of magnitude smaller than that of co p7r
and because of the higher A t mass [for this purpose
we use A tpm coupling in the form p„„(a„Atx a„n ) ].

The main conclusion of this article is that, contrary
to the usual claims, the skyrmion model, in its present
form, gives only a qualitative description of the
baryon: The calculated baryon mass is a factor of 2 too
large compared to the experimental values.

%e begin by writing down the effective Lagrangean
taking into account the effect of the interaction p, cu,

and a- fields with the pion systems:

~=~o+~ +~ +W

where

(2b)

~,= —,'f? Tr(a„M a~I') + —,
' m.'f.' (TrM 2), — (2a)

W, = ( I/32e') Tr [[a„MM', a„m M ]'},

W. = (~/Se') [Tr(a„M a„M') ]', (2c)

~.= —(p'/~„' ) (I/24~')'[. ~""Tr(M' a„M M' a,M M' a.M ) ]', (2d)

and I= exp[I (~&/f )n' 'r] witlt f = I35 Mev. Note that f„ is the pion decay constant measured in the ~,2 de-
cays. This interpretation follows from the chiral Lagrangean regardless of whether this Lagrangean admits a classi-
cal soliton or not. Hence the parameter f together with other parameters in the Skyrme Lagrangean are fixed a
priori from low-energy meson physics. The nucleon mass and other static quantities such as G„/Gz or nucleon
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magnetic moments are then computed in terms of these parameters within the framework of the skyrmion model.
In previous works Adkins, Nappi, and Witten turn the problem around and try to predict f in terms of the nu-

cleon mass. %e do not see any reason for doing this,
At the classical level, with the standard hedgehog Ansatz'

Ma(r) =exp[iF(r)r r],
it is straightforward to derive the Euler-Lagrange equation for F(r). Neglecting terms of the order O(m„), we
find

4
6yx2F'2+ 2(2y —1)sin'F ——,'x' —0 F"+ [4yF' ——,

' ]xF'
X

+ —+ (I —4y) +(2y —1)F' sin2F+ II 2F' —F' sin2F =0,1 sin~F 12 , sin F,2 . sin F
x x

(3)

x= J2ef r, n =/32e4f'/n4m'.

C & „2F,2 2sinF
(5a)

Since we are interested in the soliton with baryon
number 8 = I, F(r ) must satisfy the boundary equa-
tion

F(0) =~, F( ) =0.
The soliton mass M is given by (m„= 0)

M=Ha+H +H +H„, (4)
where

C=2&2mf /e.

Note that the o- meson makes a negative contribution
to the energy and would destabilize the solution for

in the absence of the cu term as shown previous-
ly

5

The quantum correction which comes from the
spin-isospin excitation may be obtained by the method
of Adkins, Nappi, and Kitten. By rotating the soliton
around the static classical solution to obtain a time-
dependent one in the form

H =CJt dx2F' + sin F,

2
2

0 = —yC dxx F' +-2sin F
0

F' sin F
J (} x2

(5b)

(5d)

M(r, i) =~ (r)M, (r)~-'(r),
with

A (i) = ao+ia r

being dynamical variables, we obtain the quantum
correction for the lowest excitation with I = —,', J = —,

'

4

dx x2 sin2F ' I + 4(1 2 )F 2+ 4(1 4~ + II F 2) Tr(rior riog
—1)

3e'f„ O 0 (6)

(neglecting a term quartic in the derivative of A). We
now proceed to the evaluation of the coupling con-
stants in the chiral Lagrangean and the solution of the
Euler-Lagrange equation (3).

(i) The strength of the Skyrme and non-Skyrme
terms are evaluated in Ref. 5. There is little uncertain-
ty in evaluation of the strength of the Skyrme term,
because the pion-pion P-wave phase shift is well
known.

We have 1/e = f /m with m =26m2 '(because
of the unitarity correction the p mass is shifted down-
ward from the experimental value). The non-Skyrme
term is found to be y/e = , f„jm . The 5-wave—'
I = 0 m m phase shift is not very well measured.
Within experimental error, the 5-wave vr -m phase

shift below 900 MeV can be fitted with m2 = (22—
32)m„; hence

y = 0.28-0.34.

The coupling P can be obtained from the cu —37r
width. Using the experimental width I'(o& 3' ) = 8.9
MeV and taking into account p dominance in co —3'
decay as supported by ihe calculation of ~ —m y
width, we have P = 17 which gives 0 ~ 75, the uncer-
tainty in this value being at most 30%.

It should be stressed that the strength parameter p
in the effective Lagrangean for the coupling of ~ to 3m
receives contributions from both the contact term and
the cope- vertex via the coupling of p to 2n which, in
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(t ),' =0.41 fm,

For @=005, 0 =0,
Mtt =1281 MeV,

(r') M'i =o ——0.64 rm.

Ma ——1858 MeV,

the limit of small di-pion invariant mass, reduces to
the to 3m effective Lagrangean. Since the Gell-
Mann —Sharp —Wagner (GSW) model describes well
the ratio I" (to —m y)/I (ta —3n ) via the vector-
meson dominance, the strength of the contact term is
negligible. This result is substantiated by recent
theoretical analysis. The parameter P is then deter-
mined from the t0 —3m decay rate as discussed by Ad-
kins and Nappi but must be reduced by approximately
a factor of —,

' to take into account of the enhancement
in the cu 3m amplitude due to the p propagator.

(ii) Solution of the differential equation —
W. e have

searched for numerical solutions both for 0 =0 and
for 0 = 75 and for different values of y. In fact, when
we look closer at Eq. (3), we see that y may cause
trouble, as it appears with a positive sign in the coeffi-
cient of F", so that this coefficient is not negative de-
finite and may vanish. Indeed, we found that this is
thc case with y greater than a critical value y, which
varies with Q. More precisely, for II =0, we could
not find regular solutions of (3) for' y & 0.10, and for
0 =75, the bound is y, = 0.27 so that y, increases
with 0, at least in the range 0 =0—150. When we
vary 0 with fixed y, we find that the mass M grows
nearly linearly with 0, for those values of y below the
critical value y, (Q ), and in the range of values for 0
considered. In particular for y=0.20 which is fairly
well belo~ the value determined in Ref. 5, we must
have fI ~ 30 corresponding to P ~ 11 in order to sta-
bilize the soliton.

%e display below some of the numerical results.
For y=0, 0 =0,

Mn = 1348 MeV, Ma = 1789 MeV,

These results are compared with the experimental
values

Mg = 939 mcV, Mg = 1232 McV,

(r2) t t2o ——0.72 fm, (r') Mi2 o
——0.81 fm.

The calculations were made with neglect of m„, but we
have checked that taking into account m„&0 does not
modify the results substantially.

For the range of the values of y and P determined
above, the baryon mass is too large by a factor of 2.
For y=0.27, 0 =75, we find Mtt = 1993 MeV and
Ma=2049 MeV. The 5 %ma-ss splitting is too small.
If we lower the effective t0 37r squared coupling
constant by 30%, the nucleon and 5 masses are
lowered only by 10'/o, and therefore remain still too
large.

It is interesting to note that while the presence of
the non-Skyrme term plays an important role in the
existence of a solution to the differential equation (3),
the calculated values of the nucleon and 4 masses
depend little on y. For example, taking the hypotheti-
cal case y = 0 with the same value of 0 = 75, we have
Mz = 2242 MeV and Ma ——2285 MeV, which are not
very different from the above situation. Our results
also show that most of the nucleon mass comes from
the minimal quadratic term ~o. The p, c0 terms,
although important in stabilizing the soliton, make
only a small contribution to the nucleon mass, of the
order 300-400 MeV.

In conclusion, to the extent that the derivative ex-
pansion given by Eq. (1) is valid, the nucleon soliton
mass is too large. It remains to be seen whether a
linear o- model together with vector-meson contribu-
tions can change the situation. "'

The Centre de Physique Theorique is Laboratoire
Propre No. 14 du Centre National de la Recherche
Scientifique.

(r') ' ' =0 37 fm

For y =0.10, 0 =0,
(r') Mi', o ——0.57 fm.

Mg = 1221 MeV, Mg = 2011 MeV,

(r') 'i=' =0 34 fm

For y =0, 0, = 75,
(r ) Mi, o ——0.49 fm.

M~ = 2241 MeV, Mg = 2284 MCV,

(r ) ttt o
——1.00 fm,

For y=0.10, 0 =75,
( r ) Mi t o

= 1.42 fm.

M~ =2154 MeV, My=2202 MCV,

(r ) ' =098 fm

For y = 0.27, 0 = 75,

(r )Mt o= 1.37 fm.

M~ = 1993 MeV, Mg = 2049 MeV,

(r') ttgo ——0.92 fm, (r') M", =,=1.24 fm.
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