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Role of String Excitations in the Last Stages of Black-Hole Evaporation
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%'e argue that the massive modes of the superstring can play an important role in the last stages
of black-hole evaporation. If the Bekenstein-Hawking entropy is the true statistical entropy of an
evaporating black hole, it becomes probable for a black hole to disappear by making a transition to
an excited string state. This excited string state can then decay to massless radiation, avoiding the
naked singularity of the semiclassical picture. %'e also construct the energy-volume phase diagram
separating the three phases: pure radiation, black hole and radiation, and massive string modes and
radiation.
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Superstring theories'2 are candidates for renormal-
izable and unitary quantum theories of gravity. Re-
normalizability and unitarity, while extremely impor-
tant, are not the only requirements confronting such a
theory. At least as important are several puzzles which
have been raised by the study of quantum fields in the
presence of strong gravitational fields. Perhaps the
most central of these puzzles is the question of what
happens in the last stages of black-hole evaporation.

This puzzle arises because theory of black-hole eva-
poration, which is based on a semiclassical description
involving quantum fields on classical space-time back-
grounds, appears to require the breakdown of unitary
deterministic evolution of pure quantum states. 4 Radi-
ation coming out of a black hole is in a thermal
(mixed) state as opposed to a pure quantum state. '
This does not lead to any significant problems of inter-
pretation during black-hole evaporation if one notes
that a certain amount of information about the emitted
radiation is hidden inside the event horizon. This in-
formation is contained in the correlations between
photons absorbed by the black hole and those radiated
to infinity. If we knew the quantum state inside the
horizon we could combine it with the thermal state of
outgoing radiation to make a pure state. Thus, as the
black hole continues its process of evaporation, the in-
formation content inside it should increase with time.
But the Bekenstein-Hawking (BH)' entropy of the
black hole, given by 4a M, decreases continuously as
it cvaporates. So it seems the black hole is losing in-
formation. The amount of information lost is propor-
tional to 4ir(M, —Mj), where M; is the original mass
of the black hole and Mf is the final mass. Further-
more, if the black hole evaporates entirely the infor-
rnation contained in the phases of radiation inside the
event horizon ls comp1ctc1y lost. '

Another problem raised by the semiclassical descrip-
tion of black-hole evaporation is the naked singularity
at the point in space-time at which the black hole final-
ly disappears. It is not known how to fix boundary
conditions for either classical or quantum fields at a
naked singularity. Thus, the ability to predict the fu-

ture is compromised to an even greater degree by the
appearance of a naked singularity than the thermal na-
ture of the Hawking radiation.

Now, it has often been speculated that some new
dynamics provided by quantum gravity at short dis-
tances would provide an alternative to the breakdown
of quantum mechanics which seems to be implied by
these two problems. %e argue that string theory
might provide such an alternative.

Unfortunately string theory, as it has been formulat-
ed up to now, is not adequate to address these prob-
lems in detail. The reason is that string theory is
presently understood only perturbatively. While it has
been shown how to construct string theory perturba-
tively around curved backgrounds, " the resolution of
these difficulties will involve large nonperturbative
quantum gravitational effects which take us beyond
the semiclassical expansion around a fixed back-
ground.

In spite of this there are some reasons to be hopeful
that future developments of string theory may be able
to shed light on these problems. One of these is that,
from the point of view of string theory, Riemannian
geometry seems to be embedded in some large struc-
ture. This is because each observable in Riemannian
geometry is seen to be the first of an infinite set of ob-
servables corresponding to the higher excitations of
strings. One might then speculate that a formulation
of string theory which allows one to get away from the
dependence on a fixed rigid background could bc
based on the geometry of an infinite-dimensional
space, which might be the loop space of a RicmanniaI1
or super-Riemannian geometry. If this is the case then
the ordinary Riemannian geometry would be only a
low-cncrgy approximation. In situations where the
curvature appI oachccf t11c Plai1ck dimcnsloI1s, such as
near singularities or in the last stages of black-hole
evaporation, the more fundamental geometry would
become the appropriate description. If this is the case
the excitation of these higher string modes would sig-
nal the breakdown of Riemannian geometry.

Even without k11owing the fundamcnta1 significance
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of the massive modes of the string we can be sure that
their excitation takes us out of the perturbative regime
in which semiclassical arguments are valid. The iden-
tification of the zero-slope string theory with a type of
supergravity theory requires that M, /Mp —1. There-
fore these higher string modes necessarily involve
strong gravitational fields, and any state in which they
are excited will involve nonperturbative quantum-
gravitational effects. '

In the absence of a proper formulation of nonpertur-
bative quantum string theory, we cannot give a
rigorous account of black-hole evaporation in the con-
text of string gravity. Yet thermodynamic studies of
physical systems have yielded a host of useful informa-
tion even when most details of their microphysics were
unknown. Kith this in mind we study the statistical
mechanics of configuration involving black holes,
massive modes of strings, and massless radiation.

In order to apply statistical arguments to such a
problem we need to make some assumption concern-
ing the rates of dynamical processes. %e assume that
in a quantum theory of gravity there will be a space of
states H(E,J) which describes the possible quantum
states of the gravitational field which have energy E
and angular momentum J. [In order that E and J be
well defined we must assume that all of the states in

H(E,J) are in some sense asymptotically fiat so that
there is an asymptotic region from which we may mea-
sure E and J.] We will further assume that there is in
H(E,J) a region R (E,J)» which contains the quan-
tum states which correspond to a black hole, and a re-
gion R (E,J)„„;„~,which contains the corresponding
excited states of the strings. The logarithm of the
number of states in each of these regions will be as-
sumed to be proportional to the relevant entropy. In
particular, we will assume that the BH entropy mea-
sures correctly the number of degenerate black-hole
quantum states in H(E,J). Finally, we assume that
the rates for transitions between states in the two re-
gions are on the order of the rates for transitions
between states within the regions, and that all of these
rates are on the order of I/E.

Given all of these assumptions we may assume that
the relati ve en tropics of states in the two regions gi ve
us the relative probabilities that the system will be
found in them, independently of the initial conditions.

%'e now assume that we begin with a black hole in

empty space, with an initial mass M && M~. It evap-
orates according to the Hawking process until it has a
mass F, which is much less than M, but still greater
than M~. As E decreases we consider the probability
for it to make a transition to one of the massive string
states in the region R (E,J),,„,„„,

In order to simplify the calculation we assume that
y = M~ Jn' = M /M, is greater than 1. When the
zero-slope limit of a type-2 superstring model is taken,

the Newton constant 6 and slope parameter o.
' are re-

lated by 8m 6 = g (n') '/2vr, where D is the
dimension of space-time, and g is a dimensionless
string coupling constant. For D = 10 this implies that
(Mp/M, ) =27r ~ /g .For weak coupling y= M~/M,
can be large. So our approximation is not unrealistic.
The entropy of a black hole of energy E is 5~ = 4mGF2,
and the entropy of a massive string configuration'3 of
energy E is 5, = —a In(E) + bE, where a = 10 for
closed and heterotic superstrings, and b = m- (2
+ v 2)Jn' for the heterotic string and b = Z87r&o' for
type-2 superstrings. %e see that when the energy E
goes below —yM~, Sq(E) ( S, (E) (see Fig. I). Thus
an evaporating black hole can increase its entropy by
making a quantum transition to a state corresponding
to a bunch of massive string excitations, when its mass
is less than yM~. Given the assumptions outlined
above, such a transition then becomes overwhelmingly
probable. '"

Now as shown previously' the massive closed string
excitations have negative specific heat and„ like the
black hole, s cannot be in equilibrium with an infinite
radiation bath. Thus, in the infinite-volume limit,
these states evaporate into massless modes of the
string and disappear.

Thus, we conclude that it is entropically favorable
for the black hole to make a transition to one of the
massive modes of the string during the last stages of
its evaporation. These in turn evaporate leaving zero-
mass thermal radiation. The result is that the evap-
orating black hole leaves no remnant. Among the
massive string excitations are states which correspond
to linearized excitations of the degrees of freedom of
the fundamental (infinite-dimensional) geometry of
the string theory (in the same sense that among the
massless modes are states which correspond to the
linearized excitations of the Riemannian geometry).
By exciting these degrees of freedom it appears that
the black hole can evaporate completely, avoiding the
singularity that is inevitable in the semiclassical pic-
ture.

%e must emphasize that this picture of the final
stage of black-hole evaporation depends crucially on
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the assumption that the BH entropy is a measure of
the number of quantum states of a black hole, regard-
less of its previous history. The truth of this assump-
tion is, in turn, dependent on the assumption that loss
of information really has taken place. For if all of the
information needed to restore the thermal radiation to
a pure state were still present inside the black hole
then the number of possible microstates of the black
hole would have to be much larger than the
exp[4mAM~2] allowed by the BH entropy. It would
have to be larger by a factor of exp[(M/M~) ], where
M is the original mass of the black hole.

Indeed, under the assumption that information loss
does not take place we see that it is extremely unlikely
that the black hole will make a transition to a state in-
volving massive string modes at any stage of the evap-
oration process. This is because the number of acces-
sible microstates of the black hole will then at late
times be at least exp[4m(M/M~) ], where M is again
its original mass. This is enormously larger than the
number of states accessible to the excited modes of
the string, which is on the order of E ' exp[bE],
where E is now much less than M. String theory can
perhaps resolve the difficulty of the naked singularity,
but it appears unlikely to be able to resolve the prob-
lem of the breakdown of unitary evolution of pure
quantum states during black-hole evaporation
processes.

In order to understand better the thermodynamic
processes involving strings and black holes we next
study configurations involving black holes (bh), mas-
sive string modes (s), and radiation (r) at fixed energy
and volume. Such studies have been made for black
holes in equilibrium with radiation and for massive
string modes in equilibrium with radiation. " First, we
show that all three phases cannot be simultaneously in
equilibrium. Let 0, (E;), i = 1, 2, 3, be the densities
of states of three systems with energies E;, and
E =E&+E2+E3 the fixed total energy of the com-
bined system. The heat capacity of each system is
given by C = —[T2d'ln(I), )/dE'] ' and ln(Q) is the
entropy. The variation of the total entropy of the
combined system when the E; are changed by AF;,
keeping the total energy fixed, is equal to

(1/T, —1/T )AE, + (1/T —1/T )AE

For stationary variations T, = T for all I'. Equilibrium
requires that the entropy is a maximum and therefore
the second-order variation has to be negative. This
implies

AEt bE2 (AEt+bE2)

Thus if we have all three phases in a box, the equilibri-
um configuration will be bh and r, or s and r, or r
alone depending on the total energy density and
volume.

First we compute the critical volume V„above
which only r can be in thermal equilibrium, for the two
systems bh and r, and s and r. The conditions given
above imply E„&M/4 for the bh and r system, where
M is the black-hole mass. For the s and r system the
condition is E, (E, /4aT. These inequalities impose
restrictions on V. For the black hole and radiation
o. V, = 220m E /5~ and for strings and radiation

f s 4

crV, = E+ —Db D — D-3a 4 5a 3a
2b 2b 2b

)

where D = [4Ea/b+ (3a/2b) ]
Now we can construct a phase diagram for the three

phases: (I) bh and r, (2) s and r, and (3) pure r. If the
total energy is E and the volume V, phase 1 has energy
E= o VT + I/87rT and entropy 5»+„=—', o VT3+ I/
16m T2. For phase 2 E = o VT4+ aT/(bT —1) and

5,+„=—, (o VT3) + baT/(bT —1)—(bT —I)/T.

Solving these equations numerically we have found
the entropies 5»+„and 5,+, as functions of E and V.

For a given F. and V, the system with higher 5 will be
preferred. This is plotted in the phase diagram of Fig.
2. The two critical volume curves intersect at E = 7M~
and V= 1.1 X105 Planck units. Below this energy V,
for phase 2 is higher than V, for phase 1.

Using this phase diagram we can study the quasistat-
ic evaporation of an order-Planck-mass black hole.
Consider a black hole and radiation system with total
energy 5M~. Starting at a point P in the phase dia-
gram, we can increase the volume slowly. At point 0,
the system will cross the phase boundary and enter the
string and radiation phase. If we continue increasing
the volume, the massive strings will evaporate at point
R into pure radiation. This is a possible mechanism
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and so I/g, + I/O, must be positive for all distinct I

and j. Therefore equilibrium is impossible if any two
components of the system have negative specific heat.
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for black-hole evaporation.
Before closing ~e note that the Bekenstein bound"

for the entropy of a system of energy F. and size 8 still
holds. In the case of the rigidly rotating string
described earlier R = 3 m = 4En' so that 2m ER
= Sm E2u' & (entropy of string) —bEMn' a i—nE
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