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Quantum Tunneling, Dissipation, and Fluctuations
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A theory of quantum tunneling ~ith dissipation is constructed. The frequency-dependent
transmission coefficient is calculated at zero and finite temperatures. A fluctuation-dissipation
theorem for tunneling particles is derived.
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The understanding of the properties of tunneling
particles coupled to the degrees of freedom represent-
ing the environment is of crucial importance to a large
number of interesting problems in physics. The tun-

neling of a test particle from a metastable state has
been studied by Caldeira and Leggett' and a number of
other workers2 using instanton methods, and applied
to tunneling of flux quanta in Josephson junctions. 3

In a second case, depicted in Fig. 1, a particle of given
energy E hits a barrier and suffers multiple inelastic
collisions with collective modes in the barrier, and the
transmitted particle emerges with a distribution of en-
ergies E'. This is essentially a scattering problem with
many applications such as tunneling of Cooper pairs
through Josephson junctions, ~ tunneling of electrons
out of a metal through vacuum (scanning tunneling
microscopys), and resonance tunneling of electrons in

a dirty conductor6 in the presence of phonons (finite-
temperature conductivity).

In this Letter a theory of tunneling for this very gen-
eral case will be presented. The theory is essentially a
WKB theory with weak coupling to the heat bath for
tunneling with dissipation. For a given problem which
can be solved in the absence of dissipation within
WKB we calculate the complete frequency-dependent

I

transmission coefficient, or spectral function, at zero
and finite temperatures. The transmission coefficient
can be thought of as the scattering cross section of the
barrier. We derive a fluctuation-dissipation theorem,
relating the spectral function of the particle to the
response function of the external degrees of freedom
(the "heat bath" ). From the spectral function the
a~erage energy loss or gain and the integrated tunnel-
ing rate Tq can be readily calculated and we present
explicit expressions for the case of coupling to a longi-
tudinal phonon branch. At zero temperature the tun-
neling rate may either increase or decrease because of
dissipation; at finite temperatures the tunneling rate
increases exponentially with temperature to the second
power which was also found for tunneling from meta-
stable wells. 2 All the steps of the derivation have a
well-defined physical meaning; we do not invoke
imaginary time and instanton constructions which limit
the possibility of intuitively understanding the results
and the approximations. The theory has two limita-
tions: The energy of the particle and the coupling en-
ergy should both be well below the barrier height.

The starting point is the Feynman path-integral ex-
pression for the combined probability amplitude of
particle and bath:

~ g(T) =Qf „X(T)= XI j fo T

&(Qf,Xf, T~Q, ,X, )=, D[Q], ,
D[X]exp — —,MQ —V(Q) —Vt(Q) Xx (t)

+ —,
' Xm(x' —~'x') dt. (1)

a

The potential V(Q) represents a barrier through which the particle with coordinate Q and mass M has to tunnel
while coupled with coupling strength Vt to a set of oscillator degrees of freedom x, collectively denoted by X
These modes (phonons, etc.) represent the "heat bath" with which the particle interacts.

Our strategys is to deal with the functional integral over the Q coordinate first by means of a time-dependent
WKB approximation, and perform the functional integral over the Xcoordinates rigorously with use of a formalism
developed by Feynman and Vernon' for linear coupling to the external coordinates. The wave function of the par-
ticle by itself for a given x (t) is

0(T"]=0 fO

$(Q, T) =„dg;Q (Q) „l t, D[g]exp —
J —,'MQ2 —V(g) —V, (g) Xx (t) dt,

t A
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where $ (Q, ) is a wave packet of energy E hitting the "left-hand" side of the barrier (near Q =0) at time T =0.
The wave function in the barrier can be found by use of WKB if we assume for the moment that g x (t) is just a

time-dependent potential (and not a set of quantum mechanical coordinates). In WKB, P ( Q, T) = A

x exp[iS(Q, T)/tt ] where, with f( t) —= g x ( t),

BS 1 BS
aT= 2M eQ

—v(Q) —V, (Q)f(T)+

We set S = Sa+ St where Sa is the usual WKB result in the absence of the coupling Vt.

S = —Et+ tJ '(Q')dQ', (Q) = '2M[ V(Q) —E][' /h
0

and S~ is the correction due to V&f. To lowest order in Vt f'

OO 0 dQ Mv~(Q') 0
S~ =i Jt dcu f(co)e'" g(cu), g((o) =JI, exp —Jt, dQ

OC o 27r ir„(Q ) 0' iI ~(Q")

Equations (5) were investigated in detail by Buttiker and Landauer for f'(t) periodic with frequency ~. There is

a characteristic traversal time r = f (M/[2[ V(Q) —E]I)'i dQ for a barrier of length L such that for frequencies
~ & I/r the particle tunnels through an effectively static barrier while for ~ & 1/T it tunnels through a time-

averaged barrier picking up inelastic sidebands at F. +A~, E + 2Acu, etc. %e shall see that 7 is also the characteris-
tic time scale in the presence of a thermal bath.

To compute the probability amplitude A (E,E') for the particle to have energy E' after tunneling, we set Q = L
in Eq. (5) and assume that the coupling is switched off after tunneling:

t

dT p ao

A (E,E') = Aa exp i (E' —E) T/t ——
27r ~ —oc

do) f((u)g(cu) e'"

where Aa is the tunnel amplitude in the absence of dissipation. To compute the transmission probability per unit

interval of energy E' per second, P,= (~A (E,E') ~2)/T, with T the measuring time„we need to average
J

~A (E,E') ~2 over the bath, taking into account the quantum mechanical nature of the coordinates x .

Note that the coupling term St can be written as
+OO +OO

S~ = J f'(t) Qr(t)dt, QT(t) = I exp[ —i ~(t —T) ]g (cu)dew.

This shows that QT(t) acts as a complex driving force on x, leading to an effective Lagrangean for the bath

LT(t)= X —,'m[x (t)' —cu'x'(t)]+ QTX x (t).

The resulting functional integrals over the x coordinates become

PE~, = (T~N) '
J dT) dT2exp[(i/h)(E' —E)(T') —T2)] i dX~dLgdX, dX,' D[X] D[X'1&(Xg —Xy)

t 1

&& exp —'„dt[L T, (t) —L r, (t) ] X e "P„(X;)g„'(X),
n

where @„are the energy eigenfunctions of the oscillators, P= I/kT, and N is a normalization factor. In Eq. (8) we

summed over all the final states of the bath leading to the 5 function for Xy. The integral over the forced harmon-
ic oscillators can be performed by the methods of Feynman and Vernon, ' since the coupling to the oscillators is

linear. %e find, assuming a frequency cutoff ~
f

P~E, = iAoi'exp —
JI d(ug(cu)g( —u )X"(cu) coth(Pt(u/2)

exp i (E' —E)t/t —(4m/0)drug'(( )x'" (co) [1 —e t" ] 'e' '
2' QJ

Here X" is the imaginary part of the frequency-dependent susceptibility of the bath, Y(cu) = f(ru)/ F(cu), where
f(co) is the response of a force F(cu) on the oscillators. Equation (9) is our fundamental result. It gives the com-
plete energy distribution of the outgoing particles. The formula can be thought of as a fluctuation-dissipation
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FIG. 1. Particle ~ith initial energy F tunneling through a
barrier V(0) emerging with a distribution of energies E
after collisions with collective modes.

In order to mimic Ohmic dissipation, which extrapo-
lates to a classical damping term and is believed to be
relevant for the Josephson junction, we consider pho-
nons with velocity u and D(co) =o&2/2m2u3 per unit
volume, so that

X ((d) = —Q)R,

with R = I/4Trmu3 playing the role of a resistance.
From Eq. (5) we find that approximately

(12)g((u) = ( Vt/2m')) [1 —exp( cuT) ], —

where Vt is the average coupling constant.
The line shape given by Eq. (9) with Eqs. (10)-(12)

is highly asymmetric. If we define

S(co) = —(f/m) [1—exp( —Pho ) ] 'x" (o)) (13)

and expand the exponent to lowest order we find, for

t

-hE 4Tr2 2 AE bE
t t

(14)

4~2 p oJ

Te= A(~) exp Jl d~g(0 )g( —~)S(~) .
g 2

theorem for tunneling particles since it relates the
spectral function of the particle to the dissipative part
of the frequency-dependent response function of the
bath.

The effect of the collective modes is thus completely
characterized by the frequency-dependent susceptibili-
ty X"(co) which may be related to the density of states
D(~) through

(Cd) = —
2 TTD(QJ)/mQJ, 0) & (el~. (10)

p CIJ

(AE) = [4Tr2/t] do)(og2(o))S(o)), (16)

which in the case of Ohmic dissipation with ru 7 )& 1

and P„)P becomes

(b, E) =
1

Tr 3 jl T '[ 7 7T
m —cot + —, tan

ph 2 pii pj

Hence, for p= ~ the particle is losing energy, whereas
for finite temperature the tunneling particles may actu-
ally on average gain energy, notwithstanding dissipa-
tion! As I/P approaches I/P„, (E' —E) increases
rapidly with I/P and we expect crossover to thermal
activation. For cu T « 1 andfcu » 1/p, we have

This follows directly from the fluctuation-dissipation
theorem. The first term in Eq. (14) represents elastic
tunneling reduced by a factor which has a similar form
to the Debye-Wailer factor which reduces the intensity
of Bragg spots in elastic x-ray scattering. The second
term represents absorption or emission of a single
quantum of energy at co=(E' —E)/t. The relation
between the scattering cross section and the dynamic
structure factor is a standard result of the linear-
response theory of scattering. The factor g(co) is the
effective frequency-dependent coupling. Note that for
zero temperature, S(cu) = 0 for ro & 0: No energy can
be absorbed from the bath in its ground state. If we
use the approximation of Eq. (12) in Eq. (14) then the
energy distribution of the inelastically scattered parti-
cles has a maximum at E' —E=fT ' and a halfwidth

AEtt2 -tT —at p= ~.—1

If we raise the temperature then PzE, acquires a

larger tail for E ) E'. For p ' )p,,'= 2A/T the con-
tribution of frequencies near the cutoff cu will dom-
inate and for P ' )& P,, ' the tunneling is dominated
by particles which absorb enough energy to emerge at
the top of the barrier. This happens especially for long
barriers for which T is also long. Our theory cannot
describe this crossover between quantum tunneling
and thermal activation.

The linear-response result could have been found
more easily with the use of Fermi's "golden rule"
with g(co) as matrix element. However, as the dimen-
sionless parameter R Vt2 T2co2/il grows, linear-response
theory fails but we can still use Eq. (9) to go beyond
linear-response theory. The first moment of the distri-
bution of P e„(bE) = (E —E'), is

(AE) = V2RT2cu
IN

2 3 1

(Pho) )' (18)

The function S(cu) can be identified as the dynamic
structure factor of the bath:

S(o)) =
J (dt/2m)(f(t) f(0)) exp( —i(ut)

The first case corresponds to the sideband limit of
BCittiker and Landauer, the second case to the static
limit.
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We can also integrate Eq. (9) with respect to E' to find the total tunneling probability

T~= ~AO~ exp—
1

Cck

00 d~ [g'(~) —g'( —~) jX"(~) + [g(~) +g( —~) ]'X"(~)coth
2

(19)

The first term in the exponent represents the effect of
dissipation; it suppresses tunneling. The second term
represents the effect of a Gaussian random force act-
ing on the tunneling particle; it is the fluctuation term
and it enhances tunneling. In the limit P ~ we can
compute the temperature dependence for the Ohmic
case X"(o)) = —Rcu..

sions on tunneling with dissipation. Viewing quantum
tunneling as a scattering problem was suggested by
R. Landauer. This work was supported by the
Division of Materials Sciences, U.S. Department of
Energy under Contract No. DE-AC02-76CH00016.

TF(p) = TE(p = ~)exp(7r V2tT2R/3h 3/32), (20a)

where, force r ((1,
TE(P = ~) = I~01'exp( V2tr'R cu'/re ) (20b)

The tunneling rate at P = ~ is enhanced because the
electron can tunnel rapidly when the fluctuating bar-
rier is low. The dissipative term which reduces tunnel-
ing is of higher order. The tunneling rate at finite
temperature increases like InT- I/P due to thermal
fluctuations.

The approximations we have made can be expressed
in terms of the dimensionless parameters et=~ L'
and e2=RVt2r2~2/t, where L' is a characteristic
length —L over which the potential V does not vary
significantly. For WKB to apply we assume st && 1,
and for weak coupling (St/So (( 1) to hold, e2 )& et.
Note that e2 (( 1 is the linear-response regime.
These simple approximations do not impose noticeable
restrictions on the applicability to the experiments dis-
cussed in the introduction. In the realistic case where
the dissipation is due to coupling to acoustic phonons,
the electron-phonon coupling is proportional to co, im-

plying g(co) —co for small cu. Equation (19) then
leads to a tunneling rate InT- I/P, in agreement
with the result of Grabert, Weiss, and Hanggi. The
tunneling rate at zero temperature is always suppressed
in this case.
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