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Scaling and Critical Slowing Down in Random-Field Ising Systems
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A simple scaling description of the ordering transition in random-field Ising systems is developed
and supported by renormalization-group arguments in terms of a zero-temperature critical fixed
point. The main prediction is that the characteristic relaxation time 7 ~ill diverge extremely rapidly

as the critical point is approached: 7. —exp(g ) with ( the correlation length and 8 the "violation of
hyperscaling" exponent (d —8)v = 2 —o. . Recent experiments which exhibit onset of hysteresis in

a very narro~ temperature range are discussed.

PACS numbers: 05.50.+q, 75, 10.Hk

The nature of the ordering transition in random-
field Ising systems has been a puzzle for some time. ' 4

Recent rigorous works has provided convincing justifi-
cation for an early argument of Imry and Ma that there
will be an equilibrium ordered phase for low tempera-
tures and weak random fields in dimensionality d
greater than two. s The experimental situation3 4 6

(realized by diluted antiferromagnets in a field)7 has
been clouded by difficulties in reaching equilibrium
even at temperatures close to T,o, the transition tem-
perature in zero random field. 3 6 Furthermore, re-
cent experiments on Mno 7sZn02sF2 have demonstrat-
ed that the system falls out of equilibrium very sud-
denly: Onset of hysteretic behavior on time scales of
minutes occurs as the temperature is lowered by about
lok near the ordering temperature, T, . Although loga-
rithmically slow growth of ordered domains has been
predicted to occur if the system is instantaneously
quenched to below its ordering temperature, s 9 there is
at present no understanding of what limits the growth
of correlations in the critical region. '

In this paper I present scaling and renormalization-
group arguments based on the assumption of a
second-order transition controlled by a zero-temper-
ature fixed point. As a consequence of anomalous
growth of the free energy in a correlation volume, I
obtain general scaling relations between static quanti-
ties and a prediction of dramatic critical slowing down
as T, is approached with the characteristic relaxation
time, &, diverging as

r —exp{C/( T T, l" I. —

Here i is the exponent of the correlation length

( —~T T, ~

" and 0 is—the "violation of hyperscal-
ing" exponent which controls the anomalous growth
of the free energy in a correlation volume leading to

2 —u = (d 9)v, —

with a the specific heat exponent.
The basic observation' is that at long length scales

the static random-field —induced fluctuations dominate
over the dynamic thermal fluctuations. As the tem-
perature is increased through T„ the disordering thus

occurs primarily by reversals of the static local magnet-
ization (or, generally, the order parameter). The sys-
tem is considered at a length scale of the correlation
length, g; the singular part of the effective free energy
F& of a correlation volume g» is, schematically, a func-
tion of the total magnetization M~ in this region. For
conventional systems, the characteristic scale of varia-
tion of F~ is simply set by the thermal fluctuations,
i.e., F&

—T, leading to the usual hyperscaling relation
dv = 2 —n. However, in the presence of random
fields, the scale of variation of F& will be set by the
random-field fluctuations which dominate over the
thermal fluctuations and cause the scale of F& to grow
with ( as ('s leading to the modified hyperscaling rela-
tion Eq. (2). The characteristic scale of M& over which

F& varies is of order rI'(»=(» @",with p the magneti-
zation exponent. One expects that the static correla-
tion functions of the spins 5, will scale as

(S(0)) (S(x)) —x»+' "I s(x/()
(where the bar denotes averaging over the random-
ness). I have introduced an exponent q which plays
the analogous role in describing the dominant static
fluctuations here to the one that Yi does for the ther-
mal fluctuations in conventional systems. ' Since F~
will typically be asymmetric, at a scale g (S) will be of
order M&/g», so that q must be related to p by

P = —,
' (d —2+q)i.

The thermal fluctuations around the minimum of F&
will typically be small because of the large curvature of
F~ on the scale of T. However in a small fraction of
order T/(a of the correlation volumes, there can be
two minima of F& which by chance differ in free ener-

gy by only of order T. In these active regions equilib-
rium fluctuations should occur back and forth between
the two minima. The contribution of these large rare
fluctuations to the averaged thermal correlation func-
tion is suppressed by the same factor T/( which will

suppress the magnitude of the common small fluctua-
tions. Since at T, the correlations of the thermal fluc-
tuations must be independent of g, and from the
above argument for x —g, the connected correlation
function scales as Cr —I' T(x/g)/x +" with 71=q
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+H.
The scaling of the susceptibility, X —~T T—, ~

can be obtained either by integrating up Cr or from
the scale of the curvature of F&(M&); these simply
yield the usual scaling relations y = (2 —q) v = 2
—n —2P.

In order to obtain the dynamic scaling behavior, we

must consider the characteristic time scales for the
fluctuations in equilibrium. For most of the correla-
tion volumes, the thermal fluctuations will primarily
occur about the lowest minimum of F&. However, in
the rare active regions, equilibrium fluctuations will

occur back and forth between two minima of F& since
they differ in free energy by only of order T. These
fluctuations will be thermally activated over free-
energy barriers. It is assumed that the whole distribu-
tion of F& scales as g~. Thus the free-energy barriers
will have typical height $~. The dominant slow fluc-
tuations at scale ( will therefore occur on exponential-
ly long time scales as in Eq. (1). As T, is approached
from above, fluctuations on scales longer than the
correlation length can proceed by many approximately
independent activations. Since the distribution of
these barriers will have a width of order (~„ the
dynamic scaling behavior will be on a logarithmic time
scale rather than with a single characteristic relaxation
time. Thus we expect that for T T, the ac order
parameter susceptibility will scale as

with X a universal scaling function. Various choices
for the characteristic relaxation time ~ can be made
leading to different constants C in Eq. (I). However,
since the distribution of barriers is essentially a static
quantity there will be a universal amplitude ratio relat-
ing each particular 1ni to the singular part of the free-
energy density, f. Thus T, ln~/(~f should approach a
universal constant as T T,+. At the critical point,
since X must be independent of ( we have
X(co) —~lnoi

~

t

Although I have argued that there are three in-

dependent exponents, there are several inequalities
between them. By generalization of the Widom scal-
ing law, we expect the surface tension in the ordered
phase to scale as (~ d+', the requirement that it go to
zero as T T, implies 0 ~ d —l. Another inequality
for 8 is suggested by consideration of the random-field
contribution to the free energy in a correlation volume
which should scale as g~. If the local magnetizations
were uncorrelated with the random fields this ~ould
scale as g @"+dt, since the total random field in the
region scales as ( . Since correlations between the
magnetization and the random fields should not de-
crease the contribution to the free energy, we expect
that' 0 ~ d/2 —p/v which implies & ~ 2 —q and
271 ~ 2+q. This last inequality has been proven for a

class of models by Schwartz and Soffer. '3 Together
with the requirement that the disconnected correla-
tions fall off at T„ i.e. , d —2+q 0, it implies that
v) ~ (4 —d)/2.

I now turn to a discussion of the critical behavior of
the random-field Ising model in the framework of the
renormalization group. The main assumption that I
have made is that the scale of variation of the effective
free energy in a correlation volume scales as (~ with an
exponent 8 which is independent of q and v. This is a
consequence of the observation that the important
competition yielding the phase transition is between
the exchange interactions and the random field which
implies that the controlling critical fixed point is at
zero temperature with the temperature irrelevant'4
with some eigenvalue X T ( 0. This is known to be the
case both in mean-field theory and near six dimen-
sions. In this limit it is just a simple statement of the
formal observation that the most divergent terms in a
perturbation expansion about mean-field theory are
the "tree" graphs, and it is implicit in the (6 —e)-
dimensional reduction analysis. 2 Thus the transition
as a function of random-field strength, h, at T = 0 and
h = h, o should control the behavior of the finite-
temperature transition as well and we thus consider ap-
proaching the critical point by varying & —= h —h, .

Scaling laws can be derived by renormalizing until a
scale of order of the correlation length at which point
the system is outside the critical region and we can
match to noncritical quantities. However, since the re-
normalized temperature will be small, quantities which
are singular as T- 0 even outside the critical region
will have anomalous scaling laws arising from their
singular dependence on the renormalized temperature;
i.e. , the temperature is dangerously irrelevant. 's For
example, the fact that the free-energy density f= (T/v) lnZ is nonsingular as T 0 rather than lnZ
yields the modified hyperscaling relation with the iden-
tification 8 = —X T.

The static scaling laws should be valid for 2 ( d ( 6.
Although they are not based on the 6 —e expansion,
they have the same form as the perturbative results in
6 —e if we substitute 0= —

A. T=2 in this limit which
has been shown to be true to all orders in e. ' Howev-
er, the modified scaling relations are seen to be simple
general consequences of a zero-temperature fixed
point and do not depend on dimensional reduction per
Se. In particular, in contrast to various suggestions in
the literature, '6 there is no reason to believe that away
from six dimensions the random-field exponents v(d)
and q(d) are related to the exponents of the pure sys-
tem in d —0 dimensions.

The dynamical critical behavior arises in a similar
manner to the statics. %e consider the characteristic
time 7 (L, 5, T) for relaxation of fluctuations of scale L
with 5 small. For L —(, we renormalize to a scale of
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order g at which point we are outside the critical re-
gion. Thc logarithm of the renormalized relaxation
rate will then scale as the inverse of the small renor-
malized temperature because of noncritical energy bar-
riers in the ground state. Thus we have ln7 (()—g~/T
so that the exponential dependence on ( completely
swamps the usual power-law renormalization of the
time scale. ' '8 For L » ( and T ) T, in~(L)—Inr((), while for T & T, in this limit the behavior
will bc more complicated and dominated by domain
walls; it will not be discussed in detail here.

In the critical region, L « (, scale invariance of
the barriers implies that Inr(L) —L~. Thus at T, the
relaxation between metastable (or similar free energy)
configurations in a system of size L~ can involve mag-
netization changes of order L @" (which decreases
slowly with L in d=3 since P/i is expected to be
small) and time scales r —exp(L~). At a first-order
transition, on the other hand, fluctuations between the
phases involve magnetization changes of order 1 and
time scales 7 —exp(L" ') (because of creation of an
interface of area L~ '). These similarities between
the first- and second-order cases and large sample-to-
sample variations' may give rise to potential difficul-
ties in interpreting Monte Carlo simulations without
extensive study of finite-size effects. In particular the
recent simulations'9 which were tentatively interpreted
in terms of a first-order transition may well be con-
sistent with a second-order transition.

There is a simple extension of our equilibrium
results to the nonequilibrium behavior at long times, t,

following a quench into the critical region. We are in-
terested in the time-dependent growth of the max-
imum scale R at which the correlations are approxi-
mately in equilibrium. It is natural to assume that on
shorter scales there exists local equilibrium. Thus, we
expect that for R large but much less than g, the time
scale t for correlations to reach the scale R will be simi-

lar to that in equilibrium, i.e., of order e so that
R (t) —(Int)'t~. This is to be contrasted with the pre-
viously predicted behavior below T„9 where for
R » g, the coherence length of the long-range order
grows as R (t) —K lnt because of the slow growth of
regions of differing magnetizations which are separat-
ed by domain walls. By use of the critical forms of thc
surface tension and the coupling between the magneti-
zation and the random field, it is found that near T„
K —g' . The behavior as the system is slowly
cooled through T, is thus rather sensitive to the sign
of 8 —1. If 8 & 1, then at asymptotically long times
the coherence develops most rapidly near T„while if
8 ) 1, the coherence will develop more rapidly as T is
decl eased.

The behavior discussed above is a consequence of
the crossover between the critical fixed point at h = h, o
and T=0 and the ordered fixed point at h =0, T =0

near which K —T/h2. 8 9 If the random field is small
(as is often the case experimentally), then the
behavior relatively near to T, will also be affected by
crossover away from the pure (generally zero random
field) critical fixed point at h =0, T = T,o. Our results
will then be valid in the critical region if we measure
all lengths in units of the crossover length

2-zo Z{)Lo- h and times in units of to —Lo, where qo
and zo are the exponents in zero random field. Physi-
cally, Lo is the length scale at which appreciable meta-
stability starts to occur. The logarithmic growth of
coherence in all of the regimes can be simply derived
by renormalization to the length scale R and then use
of the appropriate behavior at the renormalized tem-
perature and field. The apparent nonequilibrium
phase boundary has been observed20 to scale as the
shift in T, for small fields as expected.

I have argued that the exponential growth of relaxa-
tion times with length scale and the consequent loga-
rithmic growth of the coherence length with time oc-
curs in the critical region as well as below T, . This has
several experimental consequences. The first is that
on cooling the system will fall out of equilibrium on
experimental time scales (say minutes) in a very nar-
row temperature range. This is consistent with the re-
cent experiments on Mno 75Zno 25F2. These experi-
ments do not, therefore, necessarily imply a discon-
tinuous transition as has been suggested by the au-
thors. Another consequence of the slow dynamics in
the critical region is that the maximum order-
parameter coherence length observed when the system
is cooled to T & T, and held there will in general
depend both on the waiting time at the final tempera-
ture and on the cooling path (e.g. , whether or not h is
varied) and cooling rate. For relatively rapid cooling
and 8 ) 1, as seems to be the case experimentally, 6 the
final coherence length should be similar for different
paths from the disordered side, as observed. 6 With
this interpretation, however, the apparent lack6 of the
predicteds logarithmic growth with time below T, can-
not easily be explained. Unfortunately, crossover ef-
fects from the relatively weak random fields and other
corrections to asymptotic behavior may complicate the
analysis. Logarithmic time dependence of the capaci-
tance has been observed2' just below T, in a related
material, Fe068Zn032Fz, however, a comparison of the
magnitude of the effect with theory has not been
made. Finally, the sudden drop of the Bragg peak in-
tensity observed on warming through T, after cooling
in zero field6 can be explained as a consequence of the
long time scales for critical fluctuations below T, .

In the future, it should be possible to investigate the
dynamics of the random-field magnetic systems both
below T, and in the critical region by NMR or other
methods which combined with systematic real-time
measurements at long times and inelastic neutron
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scattering at short times could span a wide dynamical
range and quantitatively test the theoretical predic-
tions. In particular, in diluted antiferromagnets in a
field, 3 4 6 the ac magnetic susceptibility should scale as
the specific heat: X~(t0, T) —(T T—,) g(inca/( ).
This implies that the apparent width of the transition
due to finite-frequency measurements should scale as
~ T —~in~ ~

-'~'"
The ideas presented here should also be applicable

to experiments on two-fluid phase separation in porous
media or in gels if the dynamics of the gel itself are
ignored. A potential advantage of these systems over
the magnetic ones is that the exponent P (which is
likely to be small) can be measured directly via the
shape of the coexistence curve.

After this work was completed, a preprint was re-
ceived from Villainz3 which makes similar predictions.
The assumptions are stated in a rather different way,
however, which perhaps makes them seem less natur-
al. Another recent preprint24 discusses a scaling
analysis of the static behavior similar to that given
here.

Finally, I note that some of the features of the scal-
ing behavior discussed here may be applicable to tran-
sitions controlled by zero-temperature fixed points in
other disordered systems, such as the spin-glass to fer-
romagnetic transition.
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