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Resonances of Chaotic Dynamical Systems
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%e present analytic properties of the power spectrum for a class of chaotic dynamical systems
(Axiom-A systems). The power spectrum is meromorphic in a strip; the position of the poles (res-
onances) depends on the system considered, but only their residues depend on the observable

monitored. In relation with these results we also discuss the exponential or nonexponential decay
of correlation functions at infinity. In conclusion, it appears desirable to analyze the decay of corre-
lation functions and the possible analyticity of power spectra for physical time evolutions, and for
computer-generated simple dynamical systems (non-Axiom-A in general).

PACS n Urn bers: 05.45.+ b, 02.90.+ p, 03.20.+ i, 03.40.—t

A differentiable dynamical system is a time evolu-
tion x (t) = f'x (0), where t may be an integer
(discrete-time system, f is the tth iterate of a dif-
ferentiable map f) or a real number [continuous-time
system, x(t) usually defined by a differential equation
dx/dt=F(x)]. The system lives on a manifold M,
which is often Euclidean space, or may be infinite
dimensional. If B,C are differentiable functions on M
(interpreted as observables) we introduce the correla
tion function

p c «) = (8 (f' "x)C U'x) ), —(8) (C) .

It is assumed that the time averages (X),
= lim T j d r X converge, defining a probability mea-

0
sure p, invariant under time evolution, and ergodic.
We may then write (8) = Jp(dx)8 (x) = p(8), and

pic (t) = p((8 f') C) —p(8)p(C).

Let also

t ac(~) = Jtd«'"'t ec(t)

where we replace the integral by a sum for discrete-
time systems. Notice that pBg is the power spectrum of
the signal 8 ( x (t) ).

What are the decay properties of psc'? (Exponen-
tial'?) What are the analyticity properties of pttc '?

These are very hard mathematical questions in gen-

eral. In this Letter, some new results are reported,
coming from the work of Pollicott2 and the author, 3

and various comments and questions are proposed.
%e shall be concerned with an important class of
chaotic dynamical systems called hyperbolic, or
Axiom-A, systems. 4 A famous example is the geodesic

flow on a manifold of negative curvature, i.e. , the dynam-
ics of the frictionless motion of a particle moving with

unit speed on a compact manifold with everywhere
negative sectional curvature. For Axiom-A systems
there is a natural choice of p (stable under small sto-
chastic perturbations) which belongs to the class of
Gibbs states.

Theorem. Let (f') be an —Axiom-A time evolution
on M, and p a Gibbs state. Then (a) there is 5 & 0
such that pic(cu) is meromorphic (i.e. , holomorphic
except for poles) in the strip ~Imago~ ( 5. The position
of the poles is independent of BC. If the system is
mixing, there are no poles on the real axis. (b) If v is a
simple pole of pttc, its residue is (usually) of the form
o. (8)o.+(C), where a. and o. + are (Schwartz) dis-
tributions on M behaving covariantly under time evo-
lution,

f'~ = e '"'o.
, f'a+= '"'e+o. .

cr+ can be characterized by an extension of the Gibbs
property of statistical mechanics.

In (a), mixing means that pUv. (t) —0 when
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~ for all choices of the functions U, V. In (b),
"usually" means that for continuous-time systems we
have omitted a condition which is generally (perhaps
always) true. If the support of p is an attractor (or
more generally a basic set ) then the distributions cr

and o.+ also have this attractor (or basic set) as sup-
port.

The proof of (a) is in large part due to Pollicott2 and
the rest to the author. 3 These proofs use the relation
between the dynamics of Axiom-A systems and the
equilibrium statistical mechanics of certain one-
dimensional spin systems (this explains why we speak
of Gibbs states in both cases). Specifically, the time
correlation function for an Axiom-A system is identi-
cal with the space correlation function for a one-
dimensional lattice spin system with exponentially de-
creasing interactions. (This is true at least for
discrete-time dynamical systems; for continuous-time
systems the situation is slightly more complicated. See
Bowen, 5 Ruelle, 6 and references given there. ) If we
express p~c in terms of the transfer matrix L for the
spin system, the poles of pqc are found to be simply
related to the eigenvalues of L. (Since the interactions
do not have finite range, L is an operator in an
infinite-dimensional Banach space). Incidentally,
there is a kind of Fredholm determinant associated
with L; its inverse is called a zeta function and the poles
of this zeta function are simply related to those of pzc.

The complex poles of pac are naturally interpreted
as resonances. For discrete-time dynamical systems
pic is periodic, and (a) implies that the poles stay a
finite distance away from the real axis. This corre-
sponds to the known fact that pqc is exponentially de-
creasing at infinity. For continuous-time systems, the
poles may come arbitrarily close to the real axis,
preventing pac(t) from decaying exponentially at in-
finity. 7 On the other hand, the geodesic flow on a
manifold with constant negative curvature has pac(~)
analytic in a strip ~lm~~ & 5'.8 Nothing is known
about nonconstant curvature. For a nonmixing system
poles are regularly spaced on the real axis; suppose
that the system is perturbed to make it mixing, do the
poles move to produce a strip of analyticity'i Again
nothing is known. The one example which we know7
where the poles of p~c come arbitrarily close to the
real axis does not correspond to an attractor (but to a
nonattracting basic set). It is thus still conceivable that
the physical correlation functions (for Axiom-A attrac-
tors) decay exponentially. If not, what are the kinds of
nonexponential decays which really occur'? In particu-
lar, what physical meaning can one attach to those
nonexponential decays ?

All these questions appear rather formidable
mathematically, in particular in view of their relation
with zeta functions. Indeed the zeros and poles of zeta
functions are notoriously hard to locate (even though

the functions which occur here are closer to the
"easy" Selberg zeta function than to the Riemann zeta
function) .

These considerations suggest trying to investigate
numerically the problems raised above. For Axiom-A
systems, an indirect attack would be more efficient,
and will be discussed else~here. The case of simple
non-Axiom-A systems, ho~ever, invites an immediate
analysis. Specifically, one would like to compute the
correlation functions p„„(t) for the Henon map, the

l J
Lorentz system, or the simple quadratic map x

ax(l —x) of the interval [0,1], and the analyticity
properties of the Fourier transforms p„, (cu). (Here

I J
the observables x; are just the coordinates of the vec-
tor x). A similar study for an experimental signal u (i)
would be very interesting, but harder because of the
difficulty of obtaining u with sufficient precision (see
below). A casual observation of experimental power
spectra (from hydrodynamics) sometimes shows regu-
larly spaced bumps or resonances which are very sug-
gestive of complex poles near the real axis. Hopefully,
these poles could be located and analyzed precisely.

Let us try to assess the effect of noise (or round-off
errors in computer studies) on the correlation function

pic = T ' 8(f'+'x)C(f'x)dr —(8) (C).
An imprecision v on x will grow exponentially with

time like ve ', where X, is the largest Lyapunov ex-
ponent (see Ref. 1). A precise determination of
pac(r) requires thus

r « ilogvi/A. t « T.

The second inequality allows the noise to play its role
in selecting the probability measure p, if p is deter-
mined by its stability under small stochastic perturba-
tions; see Ref. 1. When the first inequality is violated,
one can argue that the noise produces a decay of corre-
lations like

exp[ —t X(positive Lyapunov exponents) ].
This exponential decay due to the noise combines with
the natural decay of pic (t). A numerical study of
log~p~c(t) ~

vs t should thus show two different rates
of decay depending on whether r is small or large com-
pared with the characteristic time (logv~/X~.

To conclude, let us mention that Frisch and Morf9
have also discussed complex poles in the context of
dynamical systems, but their poles are for the signal
u (t) rather than its Fourier transform (and the ap-
proach is completely different) .
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