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Low-Frequency Modes in Proteins: Use of the Effective-Medium Approximation
to Interpret the Fractal Dimension Observed in Electron-Spin Relaxation
Measurements
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A method based on the effective-medium approximation is developed for calculations of the
low-frequency density of vibrational states, g (w), in proteins. The calculated values of the fractal
exponent y [g (w) ~ w”] are anomalously low (0 < y < 1) in accord with estimates from measure-
ments of the electron-spin relaxation time in low-spin ferric proteins. The essential element leading
to the low vy value is the limited cross-chain connectivity in proteins, rather than the geometric ar-

rangement of the polypeptide chain.

PACS numbers: 87.15.—v, 36.20.—r

The internal motions of protein molecules are being
examined theoretically and experimentally by a variety
of techniques."? Of particular interest, because of
their possible role in protein function, are the low-
frequency modes that extend over the dimensions of
the protein. Evidence concerning such modes has
been obtained from molecular dynamics® and normal-
mode*® calculations. Measurements providing direct
information about the nature of these modes are diffi-
cult. However, there are experimental approaches to
the number or density of modes in the low-frequency
region. These include inelastic neutron scattering,”®
heat capacity,””!! and electron-spin relaxation!?~'4
measurements. It is the latter that are the primary
concern of this Letter.

Stapleton and co-workers'?~1* have found that in the
temperature range between about 4 and 20 K the
electron-spin relaxation rate (1/7,) of low-spin ferric
iron in a number of heme and iron-sulfur proteins is
dominated by a two-phonon (Raman) process with a
temperature dependence that deviates significantly
from the T2 power law expected!® '® and found experi-
mentally'”'® in ordinary three-dimensional solids. For
a Debye temperature much higher than the tempera-
ture of interest and for vibrations distributed uniform-
ly over the molecule,!® the contribution of the Raman
process can be shown to be given by the integral

1 = w'lg(w)]?exp(ho/kT)
Tl‘fo e

lexp(hw/kT) —1]?

There is evidence from detailed vibrational calcula-
tions for small proteins*® that in the relevant frequen-
cy range the normal modes are indeed delocalized.
Equation (1) leads to a temperature dependence of the
form T°*? if the density of states of the contribution
modes can be expressed as a simple power law with
g(w) proportional to »”. For an ordinary solid,
y=D—1=2, where D is the physical dimension, so

that 1/ T, varies as 7°. Stapleton and co-workers'?-!4
have found temperature dependencies in the range
T3¢ to T3 for ferric-iron-containing heme and
nonheme proteins. This corresponds to values of
vy=0.3 to 0.65 or D;=1.3 to 1.65, which they have
interpreted in terms of estimates of the geometric frac-
tal dimension of the «-carbons of the polypeptide
chain. However, Alexander and Orbach?® have point-
ed out that for a single chain, Dy is at most equal to
1, irrespective of the geometric shape. A possible way
to overcome this objection was suggested by Helman,
Coniglio, and Tsallis,?! who proved that D.; ap-
proaches the fractal dimension if there is a high proba-
bility of ‘‘connections’ between different portions of
the chain. The existence of a connection requires that
the ‘‘cross chain’’ interactions be of the same order as
those along the chain. As we point out below, such a
three-dimensional network does not, in fact, occur in
globular proteins.

In this Letter we take an approach to the fractal
dimension, D.g, that is based on the essential interac-
tion between the amino-acid residues of which a pro-
tein is composed. Each amino acid has the possibility
of four strong interactions, two with its bonded neigh-
bors along the chain and two with other amino acids
involving its hydrogen-bonding (C=0 and NH)
groups. These four interactions, if saturated, would
lead to a protein that behaves as a two-dimensional ob-
ject (Dy=2). However, the actual value of Dy is
expected to be less than 2 (1 < Dy < 2), in agree- -
ment with experiment, because many of the hydrogen
bonds are short range (e.g., those in « helices) and so
they affect only the interactions along the chain rather
than connecting different portions of the chain. It is
this fact which leads to the low connectivity that
violates the Stapleton-Herman model. Table I shows
the fraction of the hydrogen bonds involved in con-
necting different portions of the chain for proteins that
have been studied experimentally. The «-helical pro-
teins (myoglobin and cytochrome ¢ 551) have particu-
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larly low values, as expected; ferredoxin, which has no
a helices, has a connectivity that is significantly
higher.

To demonstrate that the qualitative picture based on
chemical connectivity gives quantitatively correct
results, we have developed an approximate method
based on the effective-medium approximation
(EMA)? for calculating g (w) in the low-frequency re-
gion (0 to 75 cm™!) that makes the dominant contri-
butions to 1/7 and have used the results to evaluate
the integral in Eq. (1).

We represent the protein motions in terms of the

two main-chain dihedral angles ¢ and ¢ for each ami-
no acid and assume that its interactions can be approx-
imated by those with the four ‘‘nearest’ neighbors;
two along the chain and two that are involved in strong
main-chain hydrogen bonds (see above) or, if there
are none, are closest to the amino acid being con-
sidered, but are at least six residues removed along the
chain; the latter restriction eliminates the «-helical hy-
drogen bonds and corresponds approximately to the
wavelength limit of the 7', process. Such a reduced set
of interactions leads to the following expression for
the Laplace transform of the normal-mode equations
for the protein vibrations:

(M + AT X+ X o (X = X )+ X0 (X0 = X))

AT L= X D) D= = X7 = M8 080,

where X, +; and r»m*1 are the nearest-neighbor
force-constant matrices, A, is the internal force-
constant matrix for an amino acid, M, is the ‘‘mass”’
matrix, and X' is the Laplace transform of the
dihedral angle coordinates; the right-hand side of Eq.
(2) arises from the choice of initial condition [i.e.,
xM(t=0)=28,,08,0 and x,'(t=0)=0]. The index n
runs over the chain units while m runs over the cross
links. The EMA replaces the distribution of variables
by a single, frequency-dependent variable.?2 The im-
plicit assumption made here is that the protein may be
described by an infinite two-dimensional array of
bonds on the scale of the acoustic wavelength which is
relevant to the measurement; this is on the order of 8
to 25 A. To simplify the calculations, we treat each
direction independently within the EMA approxima-
tion. For the present problem the most convenient
frequency-dependent variable is the so-called Dyson
variable; that is, & =M, '4,,1(X,— X, )X,
Since we are treating the two dimensions separately,
we have dropped the superscript and n refers to the
dimension of interest;, the force-constant matrix ele-

TABLE I. Analysis of iron-containing proteins.

Fraction Exponent y ¢

Protein® of H bonds® Expt. Theory
Myoglobin 0.14 0.62 0.6
Cytochrome ¢ 551 0.30 0.43 0.4
Ferredoxin 0.60 0.34 0.4

aStructures obtained from the Brookhaven Protein Data Bank
where the original references can be found.

YA relevant hydrogen bond is considered to exist when a donor
(N of NH) and acceptor (O of CO=0) are at least six residues apart
with the distance between the two less than 6 A; such a large cutoff
is used to obtain an upper limit to the connectivity.

“The distribution function g (w) is taken to have the form w”.

2

ment A4, ,,; depends on which dimension is being
treated. It can be shown?? that ¢, satisfies the follow-
ing form of iterative equation:

& =M, A+ (M, 02+ M, 6,50 ) 7T

(3)

there is a corresponding equation for £, . The self-
correlation function Yo(wz) is given by

Yo(w?) = (o + & +&) 7! 4)

and the density of states is obtained from Y,(w?) aver-
aged over all possible values of 501 by standard
methods.?? The total density of frequencies N (w?) is
then given by the convolution

w?
N () = [ do? Ny (@) Ny (02— ),

(%)
g(w)=2wN (0?),

where N, and N,, are the eigenvalue densities for the
two directions.

To implement Egs. (1)-(3) we need values of the
‘““mass’’ matrix elements M," and the force-constant
matrix elements 4,,+;. The force-constant matrices
were obtained for each amino acid » by numerical dif-
ferentiation of the potential energy with respect to
¢, ¥, and the ¢,y of the four nearest neighbors.
Thus, the second-derivative matrices are divided into
two by two blocks, one for » itself and four involving n
and each of the neighbors, e.g., ¢,, ¢, and
bn+1, Yn+1- The ““mass’ matrices are determined by
use of the standard formulas for torsions.??

To test the EMA in the present form for proteins,
625x 625 random matrices were generated with force-
constant distributions similar to these actually calculat-
ed for the proteins studied. In Fig. 1, we present a
comparison between EMA calculations and actual di-
agonalization of the random matrix. Several tests were
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FIG. 1. Comparison of g (w) obtained from EMA and ex-
act diagonalization of a 25-residue effective-dihedral-angle
chain: solid line, exact; circles, EMA. Along the chain, the
nearest-neighbor force-constant distribution has the form
p(x)=95"" for 5 < x < 100 and zero otherwise; across the
chain the distribution is p(I')={(1—a)/T! T~ for
I' < I', and zero otherwise with «a=0.7and ', =7.5, M =1.

run with different values for the parameters of the dis-
tribution function given in the caption to Fig. 1. In all
cases the agreement corresponded to that shown in the
figure. Thus, the EMA appears to yield satisfactory
results for g (w) in the low-frequency region for pro-
teinlike force-constant distributions. Further, separa-
tion into two independent directions is justified when
the EMA is valid for each one-dimensional problem.

Figure 2 shows a comparison between the EMA
results and a full normal-mode calculation in (¢, )
space for the bovine pancreatic trypsin inhibitor, a pro-
tein composed of 58 residues; the latter was done by
evaluating the second-derivative matrix exactly by use
of the CHARMM potential function?* and then obtaining
the normal modes corresponding to that matrix.’ Fig-
ure 2(a) shows g(w), which is reproduced quite well
by the EMA in the region up to 200 cm ™ !; in Fig. 2(b)
the integrated distribution functions are compared.
Although the EMA and full normal-mode results are
not identical, they are sufficiently close to suggest that
the former method, which is much simpler to use, can
be employed for the present problem.

To apply the EMA to the proteins listed in Table I
for which electron-spin-relaxation data are available,
the force-constant and mass matrices were evaluated
from their known structures by use of the program
CHARMM and the model described above. These were
substituted into Eq. (5) which was solved for &g (w?)
over the desired frequency range (0 to 70 cm™!) at 0.5
cm™! intervals. To calculate 1/7,, g(w) was substi-
tuted into Eq. (1) and the integral evaluated as a func-
tion of temperature. By a plot of log (1/7,) vslog T
(Fig. 3), the effective frequency exponents valid
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FIG. 2. Comparison of EMA results with full normal-
mode treatment for the bovine pancreatic trypsin inhibitor.
(a) g(w) vs w: histogram is from full normal-mode results
in (¢, ¢) space; solid line is the EMA result. (b) logN (w)
vs logw where N (w) is the integrated distribution function:
dotted line, full normal-mode calculation; dashed line, the
EMA result; also shown are the results for N(w) propor-
tional to w'*” with the best fit y = 0.35 (solid line) and y =0
(dot-dashed line).

between 1 and 10 K were obtained for comparison
with the experimental fits. The results given in Table
I show that the observed behavior is reproduced, with
the calculated values deviating from experiment by
less than the error bounds.

The essential element in the above analysis of the
observed fractal behavior of the density of states is the
difference in the connectivity along the chain and
across the chain. For the main peptide chain the in-
teraction is always strong and the force-constant values
are never close to zero. This is not the case for the
cross links, where the force-constant distribution is
peaked at the origin. These two types of distribution
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FIG. 3. Calculated electron-spin-resonance relaxation
time (1/T,) plotted vs temperature for cytochrome ¢ 551.

have been considered in previous applications of the
EMA to a variety of problems. They can be used to
introduce an analytical model for the low-frequency
probability density.2? For cytochrome ¢ 551, which we
use as an example, the main chain is indeed strongly
connected. Thus, the density of states g,(w) asymp-
totically approaches a constant as w — 0.22 The distri-
bution of crosslink force constants can be related to a
probability density for which an analytical solution ex-
ists at @ — 0;%! i.e., a probability density of the form
p(I') ~T'~* used in Fig. 1. Using the numerical dis-
tribution of force constants, we obtain the value
a=0.6 +0.1. Performing the convolution of the two
distributions, we find for this protein model that
vy=2(1—a)/(2—a). The frequency exponent ex-
tracted from this model is y =0.57, as compared with
the experimental value of 0.43 and the full EMA value
of 0.4 (see Table I). The difference between the ana-
lytic model and full calculation is reasonable since the
former considers only the limit as @ — 0.

The success of the EMA and simplified analytic
model for the density of the low-frequency vibrations
of proteins supports the validity of the explanation for
the observed ‘‘anomalous’’ fractal dimension based on
the physical strength of the interactions between ami-
no acids rather than on geometrical effects. It is likely
that the apparent dimensionality of the specific heat
measured for solid polypeptide chains at low tempera-
tures (1D for a-helical poly-alanine, 2D for B-sheet
poly-alanine)? has a corresponding origin.
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