VOLUME 56, NUMBER 1

PHYSICAL REVIEW LETTERS

6 JANUARY 1986

Nuclear Response Function in the Mori Formalism

S. Ayik‘®

Joint Institute for Heavy lon Research, Holifield Heavy-lon Research Facility, Oak Ridge, Tennessee 37831
(Received 6 August 1985)

The Mori formalism is used to study the nuclear response function at finite temperatures. This
formalism rather naturally leads to an extension of the zero-temperature random-phase approxima-
tion for finite temperatures, and it provides a prescription for the calculation of the damping widths

of vibrational states at finite temperatures.
PACS numbers: 24.10.Cn, 21.60.Jz

Time-correlation functions of dynamical variables
play an important role in the description of many-body
systems, such as liquids and plasmas.! It is well known
that the transport parameters which characterize the ir-
reversible behavior of such thermodynamical systems
can be expressed in terms of time-correlation func-
tions calculated under equilibrium conditions. Observ-
ables can often be related to appropriate correlation
functions. For example, the density-correlation func-
tion characterizes the linear response of the system to
an external perturbation. The transition strengths
from ground state to excited states induced by an
external field and inelastic scattering in the Born ap-
proximation can be directly related to the nuclear
response function, that is, the Fourier transform of the
density-correlation function.?

In statistical mechanics very powerful formalisms
are developed for the description of irreversible prop-
erties of many-body systems. In particular, the Mori
formalism provides a rather convenient framework for
calculating time-correlation functions of dynamical
variables. This formalism can be used to describe a
broad range of relaxation processes observed in nu-
clear collisions and to compute transport parameters
which characterize the approach to thermal or chemical
equilibrium. In the present work, as an illustrative ex-
ample, we study the density-correlation function (nu-
clear response function) in the framework of the Mori
formalism. In particular, we focus our attention on
the damping of the density-correlation function and
calculate the spreading widths of vibrational states at
finite temperature.’

There has been considerable interest in the applica-
tion of projection-operator techniques developed by
Zwanzig* for the study of irreversible processes. This
approach was subsequently generalized and extended
by Mori® who, utilizing projection operators similar to
those of Zwanzig, derived an exact ‘‘generalized
Langevin equation’ (GLE), describing the time evo-
lution of an arbitrary vector of observables, A4 (1),
whose components, 4,(¢), are dynamical variables of
a many-body system:

dA (0/di=i9Q AW+ [dr () A G—1)
—r. M

Here the dynamical variables are defined such that
they have no time-invariant part, A4 (1) =.2(1)
—(/(1)), where (and also in the rest of the paper)
(...) denotes an average over the equilibrium
canonical ensemble p=exp(—BH)/Z, characterized
by a temperature, 8=1/T. Notice that Eq. (1) is a
generalized form of the Langevin equation familiar
from the stochastic theory of Brownian motion. How-
ever, it is an exact equation for A4 (¢r), and hence
equivalent to the equations of motion for the many-
body system. In the Mori formalism, the choice of the
set of dynamical variables is essentially left arbitrary.
For any given set of dynamical variables, the ‘fre-
quency matrix’’ 2, the ‘‘damping term’’ ¢(7), and
the ‘‘random force” f(r) are precisely defined in the
GLE. Since we are concerned, in the present work,
with the density-correlation function, we choose the
dynamical variables as the set of particle-hole (p-h)
excitation operators, A = {a,'a;, k < I}, which satisfies
a normalization condition

(14,, 451) =8, 2

Here A,=A,(0) and 4, = A, (0) denote the initial
values of dynamical variables, e.g., Heisenberg opera-
tors. Unless otherwise indicated, we use the notation
A, = a,:a, for an ordered p-h excitation operator with a
single index a = (k,1).

For the set of p-h operators obeying the normaliza-
tion condition (2), the frequency matrix in GLE is
given by

Qo= ([[HA4,1,4,1) (3)

and the damping term is given by the time-correlation
function of the random force as

d)ab(t):([fa([)rfl:(o)b- 4)
The random force on the dynamical variable 4, is ex-
pressed as

Ja() =explit(1-P)LYi(1-P)LA,, Q)

where L =/[H, -] is the Liouville operator, and P
denotes a projection operator on the p-h subspace and

is defined by its action on an arbitrary dynamical vari-
able G as

PG=3,[G A1) 4,— ([GA,1) 4,). (6)
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The GLE can be used either to study correlations
among the variables in the set 4 or to obtain equations
of motion for the mean values and the variances of the
dynamical variables. In the first case, one proceeds by
noting that ([f,(7),4, 1) =0 for r =0. Hence, multi-
plying Eq. (1) by A,,+ and averaging over the equilibri-
um canonical ensemble, we can derive an equation for
the density-correlation function,

Rap(1)=([4,(1),A4, 1),

which takes the form

(M

-g;R(z)—iQ-R(t)+j;’dr¢(r)'R(t—r)=0. |
(8

If one wishes, instead, to obtain an equation of motion
for the mean values of 4,(¢), then the GLE can be
averaged over a constrained equilibrium ensemble (the
initial state) to find an equation for the averaged
single-particle density matrix. In a similar fashion, an
equation of motion for the variances of the variables
A, (t), which describes the density fluctuations, can be
obtained by considering a larger set of dynamical vari-
ables including {4, 4,) in addition to {4,).

Since Eq. (8) for the density-correlation function
and the equations obtained for the averages and the
variances of the variables A4,(r) are still exact, and
hence only formal identities with the equation of
motion for the many-body system, one must eventual-
ly introduce approximations. However, the attractive
feature of these equations is that the damping terms
are quite convenient for approximation or modeling.®
That is, the GLE is of value primarily because it
reexpresses the relevant quantities in forms involving
damping terms which are then easily approximated.

A study of the average single-particle density matrix
[averages of A4,(1)] and the density fluctuations [vari-
ances of 4,(7)] will be discussed elsewhere.” Here,
we discuss the density-correlation function given by
Eq. (7). The Fourier transform of the density-
correlation function is referred to as the response

GGy oy

Rp(w)=3, w—Q,—idy (W) wtQ, +id,(w) |

where ¢,(w) is the damping term for the RPA mode
with multipolarity . It is given by Eq. (11) with the
random forces in Eq. (11) replaced by the random
force on the RPA mode,

frlt)=explit(1—=PYL1i(1—P)LQ,
=explit(1-P)L1i[V,0] 1, (15)

where V = H — H, is the coupling interaction which is
the part of the total Hamiltonian not contained in the
RPA Hamiltonian H,. If we neglect the damping term

function,
Ros (w) = [ d e=™([4,(0),4,1). 9)

Taking the one-sided Fourier transform of Eq. (8)
leads to a matrix equation for the response function,

w—Q—igp(w)]-R(w)=—il, (10)

where / denotes a unit matrix and ¢ (w) is the Fourier
transform of the damping term,

bas(w) = [ die™ ™ (11,015 (O)]).

The frequency matrix, {1, has a structure similar to
the matrix appearing in the formalism of the random-
phase approximation (RPA).2? The essential differ-
ence here is that the core state is not the ground state
but it is an ensemble characterized by a temperature 7.
Hence, the Mori formalism provides, rather naturally,
an extension of the zero-temperature RPA to finite
temperatures and furthermore it provides a prescrip-
tion for the damping widths of RPA modes. The fre-
quencies, 2,, and the amplitudes, C*, of the finite-
temperature RPA modes can be determined by diago-
nalization of the frequency matrix Q,%°

([0 [HO11) = 0,([0,,0, 1) = Q,5,,. (12)

The RPA mode creation and destruction operators are
given by a superposition of p-h excitation operators,

0) =2, (Cr,— Cra,), (13)

where C}= CJ and C}= C;} denote the p-h excitation
and deexcitation amplitudes, respectively. At zero
temperature, because of the sharp Fermi surface, the
sum over a in Eq. (13) is restricted to p-h states, only.
As a result, the only nonvanishing amplitudes are p-h
and h-p amplitudes and in terms of the usual notation
they are given by C, = X and C, = Y. However,
at finite temperatures, the Fermi surface is not sharp
any more and, in principle, there is no restriction on
the summation over ain Eq. (13).

By inversion of the matrix Eq. (10), the response
function can be expressed in terms of the RPA
representation,? and we obtain

80

(14)

in Eq. (14) completely, we obtain the response func-
tion in the random-phase approximation. The RPA
provides a good description for both the mean energies
and the detailed structure of the vibrational states.
However, it does not give any description for the
damping of the vibrational states. These simple RPA
modes are embedded in a complex spectrum and con-
sequently mix with the nearby states. As a result of
this mixing the observed strength function spreads
over many configurations. This spreading is described
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by the damping term ¢, (w ) in the response function.
An exact calculation of the damping term (and
hence the response function), is not possible, because
of the fact that it contains the modified propagator,
explit(1—P)L]. A study of the modified propagator
would involve solving the many-body problem, direct-
ly. We have to introduce approximations to obtain
useful results. A systematic approach to approximat-
ing the damping term consists of applying standard
perturbative methods.*® This provides a consistent
evaluation of the damping term to a given order of

perturbation of the coupling V. Here we consider it inJ

M(w) = 2"2n.l (DA 28 (w — Ep) — IDAI28(w + Ej)e #5/ 2,

where D)= (n|[V,0,1|1) is the coupling matrix ele-
ment between the RPA mode A and the intermediate
doorway states, /, while the E;, = E; — E, are the exci-
tation energies of the intermediate states with respect
to the core energies. The first term in Eq. (17)
describes the loss of energy from the RPA mode by
emission of a phonon of frequency w. At finite tem-
peratures, as a result of thermal fluctuations, the in-
verse process is also possible. The RPA mode can ab-
sorb a phonon of frequency w from the heat bath and
be reexcited again. This is described by the second
term in the expression (17). Consequently the damp-
ing width of an RPA mode at a finite temperature is
determined by the net effect of the emission width and
the absorption width. The result of (17) can be writ-
ten in a more convenient form as

Iy(w)=T§{(w)(1—eB"), (18)

where I'§ is the emission width only, and is given by
the first term on the right-hand side of Eq. (17).

In a further evaluation of the damping term, we
should specify the structure of the intermediate states
contributing to Eq. (17). At low energies, the nucleon
mean free path is much larger than the size of the nu-
cleus. As a result the volume dissipation caused by

two-body collisions is not important. Consequently, ]

(l +ﬁ“)n,(l—nk)

a weak-coupling approximation and calculate the
damping width up to second order by taking into ac-
count only the coupling of simple RPA modes with the
states of the next level of complexity (doorway approx-
imation).> 1% Hence, in the weak-coupling approxima-
tion, the modified propagator explir(1—P)L] is re-
placed by the free propagator, explit(1—P)L,]
=explitLy]. Performing the time integration in Eq.
(11), we obtain

igr(w)=A80,(w)+5il,(w). (16)
Here A1, denotes the energy shift due to the coupling
and the width I', is given

an

n,m(1—ny)

the phase space for the uncorrelated 2p-2h intermedi-
ate states in Eq. (17) is strongly diminished. At low
energies, the single-particle motion is damped
predominantly by inelastic collisions of nucleons with
the surface of the mean field and by excitation of the
low-energy vibrational modes. The same mechanism
is also responsible for the damping of the RPA modes.
Then, at low energies, the dominant contributions to
the damping term arise from the low-lying correlated
2p-2h intermediate states. Bortignon, Broglia, and
Dasso have calculated the damping widths of vibra-
tional states at zero temperature, considering a
particle-vibration model with a coupling of the form!?

v=23,F0) +Hc, (19)

where F* is a single-particle field with the multipolari-
ty A, and Q;' is an RPA excitation operator. At finite
but not too high temperatures, the RPA modes are
damped mainly by the same mechanism, e.g., by the
excitation of a low-lying vibrational mode and a p-h
pair. Hence we can use the same model for the calcu-
lation of the damping widths at finite temperatures.
Using the particle-vibration coupling given by Eq.
(19), we can evaluate the thermal average in Eq. (17)
and find that the damping width due to emission
processes is given by

I¢(w)=21m 2| DA |? ,
w—ey—Q,—in

Here the recombined coupling amplitude is

Dk)i”= E(Ck);Frll‘“ F,’,‘:C,?)
and

= lexp(BQ,) — 1171,

m=lexpB(ep—p) +1171
are the occupation factors for phonons and nucleons,
respectively. The first term in Eq. (20) describes the
decay of an RPA state by the excitation of a phonon
together with a p-h pair, while the second term

2n

40
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(20)

describes the excitation of a p-h pair accompanied by
the simultaneous absorption of a phonon of frequency
1, such that w + Q , = €. The total damping width is
determined by Eq. (18). The damping width is
suppressed by a factor 1 —exp(—Bw) as a result of
the inverse processes due to thermal fluctuations. At
low temperatures or for high frequencies, gw >> 1,
the thermal fluctuations are small, and hence the in-
verse processes are not important. Consequently, to a
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good approximation, the damping widths of vibrational
states are described by the emission widths, Eq. (20),
alone. In this case the temperature dependence of the
damping widths is mainly determined by the occupa-
tion factors, ny of the low-lying vibrational states with
Q,~T

Recently, Bortignon et al. have extended their calcu-
lations for finite temperature by using a different for-
malism and obtained similar results for the damping
widths.!!

At higher energies, w = 15 MeV, and also at larger
temperatures, the volume dissipation becomes increas-
ingly more important, because of the shorter nucleon
mean free path and the increase in the phase space for
the uncorrelated 2p-2h states. Consequently, at higher
energies, the damping widths of vibrational states are
predominantly determined by the decay into the un-
correlated 2p-2h intermediate states in Eq. (17). This
can be calculated and we obtain for the emission
width,!> 13

(1=n)(1—n)
I’,\(w)=21m2|D,,')(_ql|2 Bo £ u

W_épq—‘Ek]*llT)

22)
where the transition amplitudes are given by the 2p-2h
matrix elements of the effective coupling, Dp 4
= (pk|[V,Q,1lq!l). Again, the total damping width is
determined by Eq. (18) which includes a suppression
factor due to the inverse processes.

This projection formalism of the statistical mechan-
ics provides two alternative approaches: The Mori for-
malism, which is followed in this work, deals with the
time evolution of observables. On the other hand, the
Zwanzig formalism seeks an effective equation for the
projected density matrix. The latter approach was al-
ready applied to the nuclear many-body problem and
was shown to give an extended time-dependent
Hartree-Fock equation.'*'®. The damping width of
the vibrational states can be evaluated by linearization
of this equation around a finite-temperature Hartree-
Fock solution as it was done in Ref. 13. However, this
approach can only account for the volume damping
given by Eq. (22), because of the fact that the inter-
mediate states occurring in the collision term of the
extended time-dependent Hartree-Fock equation con-
sist of the uncorrelated 2p-2h states. It cannot account
for the surface damping given by Eq. (20) which arises
from the particle-vibration coupling.

In conclusion, a broad range of relaxation processes
observed in nuclear collisions can be studied in the
framework of the Mori formalism. In the present
work, we studied the nuclear response function using
the Mori formalism. This naturally leads to an exten-

sion of the zero-temperature RPA formalism to finite
temperatures and also provides a prescription for the
calculation of the damping widths of vibrational states
at finite temperatures.
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