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Global Phase Coherence in Two-Dimensional Granular Superconductors
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Experimental evidence is presented from studies of the onset of superconductivity in ultrathin Sn
films which implies that the sheet resistance is the only relevant variable in determining the onset
of global phase coherence. This result is also found by a theoretical argument involving both the
phase-number and energy-time uncertainty relations.

PACS numbers: 74.40.+k, 74.20.De, 74,50.+r

Granular superconducting films are usually modeled
as two-dimensional arrays of Josephson junctions. '

Their phase transition is described as a topological or
Kosterlitz-Thouless-Berezinskii transition. 2 Anderson'
and Abeles4 introduced the central concept of a max-
imum normal-state coupling resistance RJ. If R )RJ,
the electrostatic charging energy exceeds the Joseph-
son coupling energy. This argument gives a capac-
itance-dependent condition for global phase coher-
ence, and predicts that the normal-resistance thresh-
old, above which a film loses phase coherence, should
depend rather critically on geometry.

We reconsider here the normal-resistance threshold
for a transition of a two-dimensional granular film to
zero resistance at low temperatures, i.e., the threshold
for global phase coherence. ' Examination of the su-
perconducting properties of ultrathin quench-deposited
tin films suggests that there may be a universal resis-
tance above which global phase coherence cannot be
established. Results on the depression of T, with in-
creasing resistance have been reported in a number of
other ultrathin film systems~9 and are consistent with
this hypothesis.

%e present a semiquantitative theoretical argument
for a universal threshold independent of localization
theory. It comes from the requirement that global
phase coherence can only occur when both the phase-
number and the energy-time uncertainty relations are
satisfied. We first study a single junction using the
resistively-shunted-junction (RSJ) modelta to find a
threshold criterion depending only on the resistance.
The conclusions follow from the macroscopic
quantum-mechanical nature of the variables character-
izing the Josephson coupling. "' This single-junction
result is then generalized to a random two-dimensional
array.

Tin films were evaporated by use of a molecular-
beam vapor source through a mask onto glazed alumi-
na substrates at 18 K in a vacuum in the 10 ' - to
10 -Torr range with an apparatus described else-
where. ' Successive increments of Sn could be added
over the same area increasing the nominal thickness of0
a film at a given time by as little as 0.1 A. In this way
we could observe the onset of superconductivity as the
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FlG. l. Values of Ro(T =20 K) vs thickness t Each.
nearly vertical pair of points corresponds to successive evap-
orations which delineate the onset of superconductivity in
seven different samples. When Ao has the greater value (cir-
cles), the particular sample is not a superconductor whereas
after a fraction of an angstrom of Sn is added the sample be-
comes a superconductor with Rfj given by the lesser value
(squares). The inset shows Ro ( T) for one of the samples.

thickness of a film increased and its resistance de-
creased.

In the inset of Fig. 1 we show R~(T) before and
after addition of only 0.75 A of Sn which brought a de-
crease in the normal-state sheet resistance from 10 to
3.6 kQ. At 10 kQ the sample did not attain zero
resistance at low temperatures, even though its resis-
tance fell by 2.5 orders of magnitude near the bulk
transition temperature of Sn. On the other hand, the
3.6-kQ sample was a superconductor at low tempera-
tures. These curves are an example of the difference
between samples which are resistive at low tempera-
tures (i.e., exhibit only local phase coherence), and
those which exhibit zero resistance (i.e., global phase
coherence). In the main part of Fig. 1 we display the
very rapid onset of global superconductivity with in-
creasing thickness for seven separate series of evapora-
tions onto different substrates. Each nearly vertical
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pair of points relates to two successive evaporations of
a particular series. When the film has the larger
normal-state resistance (circle), it does not become a
superconductor while after the next evaporation
(square), it does. In each case, the nominal thickness
difference between successive evaporations is a frac-
tion of an angstrom. The pairs of points bracket a
sheet resistance of roughly 1.5t/e2. Remarkably, this
resistance is about the same for each of the series of
evaporations, although the nominal thicknesses vary
by a factor of 3. These variations in thickness at the
threshold imply significant differences in microstruc-
ture. Films with normal-state resistances higher than
those represented in Fig. 1 exhibit local superconduc-
tivity: Although they do not enter a zero-resistance
state their electrical resistances decrease substantially
at temperatures very close to the transition tempera-
ture of bulk Sn. The behavior of these high-resistance
films appears to be explained by a percolation model
involving tunneling links. '3 The absence of a depres-
sion of T, with increasing sheet resistance is in con-
trast with the work in Refs. 6-9. The present data to-
gether with those in Refs. 6-9 strongly suggest the ex-
istence of a universal resistance threshold below which
global phase coherence is established.

A criterion for global phase coherence is found by
requiring that a coupled superconducting system satis-
fy both the phase-number and energy-time uncertainty
relations. When these fail„we can no longer describe
the granular system as the quasiclassical limit of an
underlying macroscopic quantum-mechanical model.
One might then expect phase correlation to exist only
over short distances and for short times. This can lead
to a low but nonzero resistance. Our new condition
for the onset of global phase coherence replaces the
Anderson-Abeles requirement that the Josephson cou-
pling energy exceed the charging energy.

To develop the argument we first treat the case of a
single Josephson junction and then generalize the
result to an array of junctions. Let hg and /J, n be
the phase-difference and pair-number-difference un-
certainties, respectively. 3 They must satisfy an uncer-
tainty relation:

Aqbhn & —,'.
This condition is valid provided hn 1, for then

hp & 1 and the multiple-valuedness of $ is unimpor-
tant. %e describe the junction by the RSJ model' —a
parallel combination of a capacitor C, a quasiparticle
resistance R, and an effective inductance L = [(2e/
f)li cos@] ', where Ii is the maximum Josephson
current.

In the above quasiclassical model the low-lying exci-
tations of the junction are the plasma oscillations at the
frequency aio ——1/(LC) 't2. It is necessary to take
A'coo && kp, T to ensure that the system is close to the

Both Eqs. (1) and (2) must be satisfied for the phase
to be a well defined macroscopic quantum variable. In
a parallel LRC circuit, the width of the resonance is

y = 1/RC. To measure a spontaneous classical fluctua-
tion, which will occur within a frequency range y, we
require measurement over a characteristic time inter-
val ht ( y '. Over this time At, a phase uncertainty
given by LLqb=yht=ht/RC will develop. We note
that LL$ & 1 for two reasons: (1) If it were not, then
as noted above, $ would not be a meaningful quantum
mechanical variable. (2) If A$ ) 1, then yet ) 1 and
we would not have enough time to measure hE before
the fluctuation had decayed. '5

We can compute the energy uncertainty if $ and n

exist (i.e. , if there is phase coherence) from'6 bE
= (2e) (hn ) /C together with Eq. (1) and the relation
5@=/J, t/RC:

b, E & [(2e)'/4C](RC)'/(ht)' (3)

Equations (2) and (3) are plotted in the hE —I/ht
plane as curves b and a in Fig. 2 along with the vertical
line c, I/ht = (RC) '. The intersections of curves a

gC

hE

FIG. 2. Energy uncertainties AE vs 1/5 t. Curve a is from
Eq. (3) which depends on phase-number uncertainty and
charging energy and curve b is from Eq. (2) which is the
usual Heisenberg relation. The verticle line c corresponds to
yb, t = 5@= 1. The heavily shaded region is unphysical and
the lightly shaded regions are not phase coherent.

ground state of the coupled superconductor problem.
Such a condition is easily satisfied for small-grain met-
al systems, but may not be for more macroscopic junc-
tion structures. If this condition is not satisfied, then
the threshold criterion ~i11 depend on junction param-

- eters such as L and C, and on temperature. '4

Although the equations of motion of the RSJ model
are quasiclassical, Eq. (1) implies that @ and n are real-

ly quantum-mechanical variables. In a full quantum
theory we must also satisfy the following independent
uncertainty relation:

dEIt &ti.
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R &t/e (5)

which is the condition for P being to the right of c.
This can be interpreted as a threshold criterion for a
tunneling resistance R, above which zero-resistance
Josephson coupling is not found.

If a thin granular film can be modeled as a square
lattice of junctions, then the above condition in a sin-
gle junction will also be the condition on the sheet
resistance of the array. However, an actual thin-film
geometry is more properly modeled as a random net-
work of Josephson junctions. The sheet resistance of
such a network has been described by Ambegaokar,
Halperin, and Langer' and Levy et al. ' using an ar-
gument which we briefly recapitulate. First disconnect
all the junctions in the random network, and then
reconnect them one by one in ascending order of resis-
tance. A stage will be reached where the next junction
completes an infinite cluster connecting the ends of
the network. Let the normal-state resistance of this
last junction be R~. The measured normal-state sheet
resistance of the entire two-dimensional network will
be R~, as this junction is the bottleneck. Junctions
with resistances greater than R~ are irrelevant since
they are always shunted by junctions with resistances
of order R~. Junctions with R & R~ only form finite
clusters; over macroscopic distances they do not affect
the conductivity because the current must still pass
through junctions with resistances of the order of R~
to get from one cluster to the next. If we identify R„
the resistance of a single junction at the onset of su-
perconducting coupling, with R~, then Eq. (5) is the
condition for global superconducting coupling. How-
ever, even if Eq. (5) is violated, this does not preclude
local superconductivity.

The above resistance threshold t/e is then seen to
be remarkably close to the observed threshold points
of Fig. 1 which bracket 1.5t/e2. The closeness of the
agreement is remarkable since neither the uncer-

and 6 are at the origin and at the point I' ~here

(b E )p =t2y/e2R; (b t )p
——e2R /yt.

This intersection I' can occur either to the left or to the
right of the line c. If I/b. t y, i.e., if P is to the right
of c, then all states compatible with Eq. (2) also satisfy
Eq. (1). If P is to the left of c, i.e., I/b. t & y, then
there are states satisfying (2) which violate (I).

The Heisenberg uncertainty relation (2) means that
the system is being described as a mixture of energy
eigenstates, with energies E & Eo, the ground-state
energy. When (I) is violated, the lowest-lying states
are not the coherent ones, and the n - g representation
breaks down. In other words, the state of minimum
internal energy is then one in which there is no
Josephson coupling. Superconducting coupling is thus
found only when

tainty-principle argument nor the percolation argu-
ment purports to be precise. The main point of the
above discussion is that the capacitance between clus-
ters or grains drops out of the final result even though
the concept of charge fluctuations is still central. The
experimental data used here support our view that
there is a universal threshold and that the value of the
capacitance is irrelevant. Within the context of our
model the latter will bc true as long ash~0 && kBT and
Et » e /C. If we take the limiting junction resistance
to be t/ez, this implies that 1.6X 10 '6 F « C« 3X IQ " F. This is easily satisfied if Cis the in-
tercluster capacitance of the limiting junction of a film
near its percolation threshold.

It is important to note that the above considerations
also only apply when the Josephson coupling energy
E& & kaT; otherwise the coupling will be weakened by
thermal fluctuations. This condition can be satisfied
when R = R, not far below T, for weak-coupling su-
perconductors. In addition, effects due to collective
plasma oscillations coupling many clusters are neglect-
ed. Presumably these would be of higher energy than
the k = 0 mode which is implicit in our treatment of
each junction as independent.

The above model is limited to the consideration of
the coupling of sites where local superconducting order
is already established. In the case of the Sn films in
the present work thc transition temperature of the
clusters is very close to that of bulk material. This im-
plies that the material within the clusters is highly or-
dered and localization in the conventional sense is not
relevant. On the other hand, the absence of supercon-
ductivity in films of high sheet resistance has been at-
tributed to pair breaking or to localization effects. 6 9 It
is possible that either of these mechanisms could lower
the local transition temperature and indeed the lower-
ing of the transition temperature has been the focus of
the interpretation of most of the previous data. 6 9

However, as long as local order survives, the above
considerations should bc valid provided the local tran-
sition temperature has not been driven to zero. Furth-
ermore, in the context of the data reported here, it is
difficult to understand how pair breaking or localiza-
tion effects could disrupt globa/ phase coherence
without disrupting local superconductivity. The latter
is present in the case of the Sn films we have studied,
even when the low-temperature resistance is nonzero,
i.e., when there is no global phase coherence. '3

A somewhat surprising conclusion ~ould follow
from the existence of a universal resistance threshold
if the quasiparticle resistance were the appropriate one
in Eq. (5). First, for a single junction for which

faoo» kBT, even if the quasiparticle resistance were
low enough to permit coupling at some temperature, if
it behaved in ideal manner, it ~ould increase as T is
reduced until the Josephson effect disappeared at a low
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enough temperature. A granular film could also
reenter the normal state as a result of the increase in
the intergrain quasiparticle tunneling resistances with
decreasing T.

%e speculate that a continuous film can be
described in the continuum limit of an array of RSJ-
coupled superconducting sites. A consequence of this
generalization may be the universal disappearance of
superconductlvtty 1n two d1111eIlslolls as T 0, s1flce
for all metal films in two dimensions R —~ as
T 0.

In conclusion, we have observed that the onset of
global phase coherence in two-dimensional granular
superconductors seems to depend only on the sheet
resistance. We have further presented a model in
which the zero-point fluctuations of the junctions
decouple the clusters of the film, thereby producing
just such a result. The model is a generalization of the
Anderson-Abeles idea3 4 that the occurrence of super-
conductivity in granular films is intimately connected
with charge fluctuations.
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