
VQLUME 56, NUMBER 4 PHYSICAL REVIEW LETTERS 27 JA.NUARY 1986

Experimental Evidence for the Haldane Gap in a Spin-1,
Nearly Isotropic, Antiferromagnetic Chain
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Neutron scattering has shown that the lowest spin excitations in the spin-1 antiferromagnet
CsNiCl3 in its one-dimensional phase occur at finite frequency. After allowance for the known
weak interchain coupling the gap is found to be in good agreement with recent numerical calcula-
tions. The results support the Haldane conjecture that in integral-spin chains with isotropic interac-
tions a gap separates the ground state from the excitations.

PACS numbers: 75.25. +z, 75, 10.Jm

A large body of experimental evidence suggests that
systems with isotropic spin Hamiltonians exhibit a gap-
less spin-wave spectrum. Therefore considerable in-
terest has been stimulated by Haldane's conjecture'
that a gap appears in the excitation spectrum of an an-
tiferromagnetic integer-spin chain but not in that of a
half-integer spin. While it has been shown analytically
that the spin--, antiferromagnetic Heisenberg chain is
gapless, an exact solution of the analogous spin-1
chain does not appear to be possible and finite-size
scaling methods have been used to investigate its prop-
erties. Botet, Jullien, and Kolb2 estimated the size of
the gap for a Heisenberg chain with exchange constant
2J and axial anisotropy D(S')2 by extrapolating to in-
finite N the results for finite rings of N spins calculated
by the Lanczos algorithm. They found that a gap ex-
ists for ——,

' ~ D/2l ~ 0.8. The gap decreased rapidly
for negative D in contrast with the increase expected
for classical Ising-type systems. Their results were ini-
tially challenged by Bonner and Miiller3 on the basis of
similar experience with other Heisenberg chains.
Later, Lanczos calculations for N ~ 14 and Monte
Carlo calculations for N ~ 32 by Parkinson et ai.4 indi-
cated that a finite gap of order 0.4X 2l is likely to exist
for a Heisenberg antiferromagnetic spin-1 chain at
T= 0. Analytic solutions of the plane-rotation model
of the chain have been obtained by Mattis5 for a re-
stricted set of parameters. His results are in agreement
with the work of Botet, Jullien, and Kolb2 although
they do not completely confirm it.

CsNiC13 is an easy-axis spin-1 antiferromagnetic
Heisenberg system in which the Ni atoms form chains
parallel to the c axis of the hexagonal lattice. The
Hamiltonian is

0=JXs, s, +J Xs,. s„+DX(s;)',

where J is the intrachain exchange and J' the inter-
chain exchange, and D, the axial anisotropy constant,

is negative. Two three-dimensional (3D) phase transi-
tions at 4.85 and 4.46 K have been observed by
specific-heat6 and nuclear magnetic resonance' mea-
surements. It has been shown by neutron diffraction8
that in the lowest-temperature magnetic cell there are
three chains ordered antiferromagnetically along their
length; on one of the chains the spins point along the
chain direction, while on the other two chains, the
spins are canted in a plane away from the chain direc-
tion by about 60'. The 1D magnetic properties have
been investigated by magnetic susceptibility, 9 thermal
expansion, '0 heat capacity, 6 and acoustic attenuation, "
but accurate values for the parameters of the Hamil-
tonian could not be obtained. We present here
neutron-scattering experiments that determine the
values of J, J', and D from measurements of the spin-
wave dispersion in the 3D ordered phase and show
that a gap exists in the 1D phase above 4.85 K. '2 The
gap is too large to be caused by the known single-ion
anisotropy and lends support to the Haldane conjec-
ture.

Constant-Q measurements were made on a single
crystal of CsNiC13 with a triple-axis spectrometer at the
NRU reactor, Chalk River. The energy resolution was
0.13 THz for most of the measurements. Spin-wave
dispersion relations were obtained in the lower 3D
phase at T~2.7 K as shown in Fig. 1. A six-
sublattice model based on dynamic-susceptibility
theory'3 gave an excellent description of the observed
peaks when folded with the experimental resolution
especially near ( —,

'
—,
' 1). The following values for ex-

change and anisotropy constants mere obtained:
J=0.345 +0.008 THz, J'=0.0060+0.0005 THz, and
D = —0.013 + 0.002 THz. '4 These values differ signi-
ficantly from those obtained in an earlier study. 's The
results confirm that the anisotropy (D/2J = —0.019)
and basal-plane exchange (J'/J = 0.017) are sufficient-
ly small that CsNiC13 may be described as a nearly
Heisenberg quasi one-dimensional system. In particu-
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FIG, 1. Spin-wave peak frequencies measured in the 3D

phase of CsNiC13 for 1.8 K» T» 2. '7 K, compared with

frequencies obtained from a convolution of the theoretical
spin-wave spectrum with the experimental resolution. Only

near (T T 1) can two peaks be resolved.

lar, the D largely arises from single-ion anisotropy so
that it will be of the same magnitude in the 1D phase.
CsNiC13 is therefore suitable for testing the conjecture
of Haldane, provided due account is taken of the small
but nonnegligible effects of D and l'.

To determine whether an energy gap exists scans
were carried out along (g q 1) as a function of tem-
perature above TN. It was found that spin excitations
remain well defined with little change in frequency up
to at least 1Q K. No evidence was found for growth of
a central peak. It may be seen from Fig. 2 that the
spin-wave group at (QQ1) with frequency =0.5 THz
persists up to 10 K. By 16 K the peak becomes very
broad and weak, but no softening is observed (inset).
Similarly, at (0.20.21), the peak frequency of 0.3 THz
is little changed from its low-temperature value. At
(0.250.251) and (0.280.281) the two peaks that are
distinguishable at 2.1 K are replaced at 8.0 K by one
broad peak. Our results for the basal-plane dispersion
in the temperature range 8-10 K are shown in Fig. 3.
All modes occur at finite frequencies. Other experi-
ments show that the frequency of the mode in the 1D
phase at ( —,

'
—,
' 1) is also finite and only softens to zero

as TN is approached. ' The results, together with the
absence of a central quasielastic peak, suggest that the
spectrum of isolated spin-1 antiferromagnetic chains
may indeed exhibit a gap, but that the 3D coupling
provides significant dispersion above T~.

To allow for 3D coupling and thus derive the value
of the gap-mode frequency vo of an isolated chain (i.e. ,
when l'=0) we apply perturbation theory in the spirit
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FIG. 2. Temperature behavior of spin-wave peaks at
(001) and (0.20.21.0). The inset shows that the peak at
(001) does not shift in frequency from 2 to 16 K.
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FIG. 3. Spin-wave peak frequencies measured along

(qq 1) at g —10 K. The line is the dispersion given by Eq.
(4) from which a frequency of 0.32+0.03 THz is deter-
mined for the Haldane gap mode.

of Scalapino, Imry, and Pincus" to the system of
weakly coupled 1D chains. Above TN the canting is
absent and all chains are equivalent with spis along + c
so that there is one chain per cell. Each chain has
strong correlations along its length; its lowest-
frequency dynamic response, which occurs at wave
vector (001), is that of an oscillator resonating at the
minimum frequency vc,

g(v) = Al(v' —vo').

When the set of oscillators is coupled at right angles to
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the chain by an effective coupling J' the coupled sus-
ceptibility for wave vector q, = (q q 0)27r/a is found to
be

(3)

resulting in a spin-wave dispersion

v(q ) = [v'+AJ'(q )]'~'

The dispersion of Fig. 3 thus arises because the cou-
pling at (001), i.e. , for q =0, is + 6J' and increases the
observed frequency above vo, whereas at ( —,

'
—,
' 1)

where q= —,
' the coupling is —3J' and depresses the

frequency below vo. The line in Fig. 3 shows that Eq.
(4) gives an excellent description of the dispersion in
the 1D phase with parameters AJ'= 0.028 +0.005
THz2 and a gap-mode frequency of 0.32+0.03 THz.
Note that the dispersion occurs in the absence of direct
interchain spin correlations which are weak at
T= 2TN, it requires only the long correlation length
along each chain that exists at 10 K, Indeed the
dispersion is in a sense a consequence of the finite
minimum resonance frequency of each chain. A fur-
ther check that Eq. (4) gives a reasonable physical
description of the effects of 3D coupling above TN is
that the value of AJ' is of approximately the size ex-
pected. Thus if the classical value of A is taken,
8JS=2.76+0.06 THz, then J'=0.009+0.002 THz is
found, close to the value, J'=0.0060+0.0005 THz„
known from the spin-wave spectrum of the 3D phase.
Given the presence of critical and nonlinear effects in-
cluded in the effective coupling J', the description of
Eq. (4) is therefore a reasonable physical approxima-
tion. It allows the 3D effects to be removed so as to
derive an estimate of the gap frequency, v0=0.32
+0.03 THz, of a single isolated chain for comparison

with theory.
For classical spins the observed gap of 0.32 THz

would require an anisotropy D = —0.037 +0.007 THz.
This is three times larger than the known value of
—0.013 +0.002 THz determined from the spin-wave
dispersion in the 3D phase. Hence the observed gap
cannot arise from anisotropy. For D =0 the gap for a
quantum spin-1 chain has been predicted by Botet,
Jullien, and Kolb2 to be 0.25(2J) =0.17 THz and by
Parkinson et ai.4 to be 0.40(2J) = 0.28 THz for
CsNiC13. Our gap agrees with the latter within 2 stand-
ard deviations. The larger value of Ref. 4 occurs be-
cause the gap as a function of I/1V levels off for
N & 14 whereas the calculations for N ~ 10 in Ref. 2
do not sample this asymptotic behavior.

Further confirmation of the existence of a gap for
T & TN has been obtained from measurements of
5(Q, v=0) along (71 ' 1) with a frequency resolution
of 0.25 THz. At 10 K no evidence for elastic 3D criti-
cal scattering is observed at q =

3 3 or 3 This is

expected as the lowest mode lies at a finite frequency
beyond the resolution function of the spectrometer.
By a change of the frequency transfer to v =0.1 THz,
weak broad peaks were observed at the 3D positions
consistent with the intersection of the resolution func-
tion with the finite-frequency peaks of Fig. 3. Thus,
all the critical scattering is in the excitations.

Experiment, therefore, supports Haldane's conjec-
ture that the isotropic spin-1 antiferromagnetic chain
exhibits a gap in its excitation spectrum. Its magni-
tude for CsNiC13 agrees with that predicted by recent
calculations for spin-1 antiferromagnetic chains near
the Heisenberg point.

If confirmed by further work our results suggest that
the apparent parameters (i.e. , those obtained with the
aid of linear theories) are in fact determined by the
many-body interactions. For we would expect that
CsNiC13, RbNiC13, and CsNiF3 would all have the
same sign of anisotropy. All mechanisms (e.g. , dipole,
orbital effects from the nonideal c/a ratio) would lead
to an XY-like anisotropy. In fact only for CsNiF3
where the ferromagnetic coupling should lead to small
many-body effects is the system strongly XY like. For
the others the antiferromagnetic coupling and the Hal-
dane effect apparently overcome the intrinsic anisotro-
py to produce systems with Ising-type gaps.
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