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Identification of Vortices in Suyerfluid 3He-8
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A numerical solution of the Ginzburg-Landau equations for superfluid He-8 vortices gives the
following results: The low-pressure vortex is a new "double-core vortex" whose rotational sym-
metry around the vortex axis is broken. The high-pressure vortex is the v vortex. The theory
gives a transition between these vortices which is in excellent agreement with experiments.

PACS riurnbers: 67.50.Fi

The experimentally observed transition in the vortex
cores of rotating 3He-B'2 has stimulated several
theoretical attempts to identify the two stable vortex
structures. The first vortex was calculated by Ohmi,
Tsuneto, and Fujita3; it is called the o vortex. The
second vortex —the v vortex —was discovered by
Salomaa and Volovik. 4 They identified it as the low-
pressure vortex but could not find the high-pressure
vortex. The same result was also reported by
Passfogel, Tewordt, and Schopohl. 5 By use of an ap-
proximate approach, Fetter and Theodorakis found
a transition between the o and the u vortices. In this

Letter I describe a third vortex which has a double
core and a broken rotational symmetry around the vor-
tex axis. A numerical solution of the Ginzburg-
Landau (GL) equations identifies this new vortex as
the low-pressure vortex and gives a transition to the u

vortex near the tricritical point in excellent agreement
with experiment.

Because there are no coreless vortices in the B
phase, any equilibrium vortex must have the
minimum circulation. There is no reason to break the
translation symmetry along the vortex axis. It follows
that the GL differential equations can be reduced to
the form (5=x,y, z)8

(y82+ 82)Ati„+ (y —1)t1„t1 Aa —[ —A+ p A" Tr(AA) +p2ATr(AA')

+p3AAA'+ p4AA"A+ p5A'AA)t, „=0,

(t1 z+ y By2) A a~+ (y —1)tl„&yAti„—[ —A+ Pi A"Tr(AA) +P2A Tr(AA')

+P3AAA" +P4AA" A+ P5A'AA]ay = 0,

(t) 2+
t1yz) A ii,

—[ —A+ Pi A' Tr(AA) +PzA Tr (AA') +P3AAA'+ P4AA"A+ PSA'AA]ii, =0.

(1a)

This is a partial differential equation in two variables
for the order parameter A, which is complex 3 x 3 ma-
trix. Equation (la) has to be solved together with the
boundary condition

lim A(r, p) = 1 exp(ip), (lb)

where r and $ are the polar coordinates and 1 is the
unit matrix. The distances are measured in units of
the temperature-dependent coherence length g(T)
and the order parameter is normalized to the unit ma-
trix in the bulk 8 phase. 9

The problem (1) contains the parameters p; and y,
which are functions of the pressure. I use the p coeffi-
cients tabulated by Sauls and Serene. 'o This means
that whenever a pressure is quoted in this paper it
means the pressure according to these coeff"icients.
This pressure is only roughly equal to the real pres-
sure; the tricritical point, for example, is at 28.5 bars
on the Sauls-Serene scale, the real pressure being 21
bars. Zero pressure corresponds here to the weak-
coupling values of p, . The constant y is assumed to be
equal to its weak-coupling value 3 to all pressures.

The problem (1) was solved numerically. The space
was discretized to a square lattice and at each iteration
an increment was added to A(x„,y ) that was propor-
tional to the left-hand side of (la)." This proved to
be very effective if not too small a lattice constant was
used. Computing times of some minutes were enough
to obtain convergence on a moderately fast computer.
It is remarkable that all the qualitative results and to a
large extent also the quantitative results presented in
this Letter can be produced with a relatively large lat-
tice constant of g(T). With this choice the propor-
tionality constant mentioned above can be taken as
0.1, and 1000 iterations yields high accuracy.

In order to classify the various solutions it is useful
to consider the symmetries of the problem (1).4 They
are (a) rotations around the vortex axis by an arbi-
trary angle o. combined ~ith phase multiplication
[exp(in) C' 1, (b) reflection in the x-y plane (a'), (c)
reflection in the x-z plane combined with complex con-
jugation (Toy), and (d) combinations thereof. The
solution of the problem that has all these symmetries
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quence it also has a discrete rotational symmetry by
180 (C' ), but the continuous rotational symmetry is

strongly broken. These symmetries were not utilized
in the solution of (1) in the first place, but they always
turned out to be satisfied in the end. It follows from
the point symmetries that the order parameter consists
of nine real functions on the x and the y axes, but else-
where all the eighteen real degress of freedom of A are
nonzero. Symmetries allow four nonzero components
in the vortex center, but actually the center is dom-
inated by the planar phase. On the x axis the order
parameter rotates slowly around the y direction by the
total angle of 180'.'3 On the y axis the changes are
more rapid: The planar phase of the center is out of
phase with the bulk 8 phase and there is an interface
between them. The local energy density has a max-
imum at these points [x=0, y= +2.7$(T)], which I
call the cores of the vortex. The trapping potential for
ions is a double-well potential that has minima at these
points. '4 More specifically, if the energy of the ion in
the normal state is taken to be zero and in bulk super-
fluid it is unity, the energies in the vortex center and
in the core are 0.69 and 0.47, respectively (weak cou-
pling). Although the shape of this potential is very
different from the rotationally symmetric potential of
the u vortex, the magnitudes of the potentials are al-

most equal.
Figure 3 displays the energies of the three vortices

as functions of pressure. At all pressures the energy of
the o vortex is clearly higher than the energies of the
other two. At low pressures the new vortex has the
lowest energy. It has been shown previously ' that
the o vortex has no local stability, but is a saddle point
of the energy. All my numerical results indicate that
the same is true for the u vortex at zero pressure (i.e.,
at weak-coupling values of the P coefficients). In fact,
in the weak coupling I was not able to find the u vor-
tex at all unless I constrained the order parameter to
have the rotational symmetry. The new vortex did not
show any sign of further symmetry breaking. With an
increase of the pressure, the energy difference
between the new and the u vortex decreases and the
energies cross at roughly 3 bars below the tricritical
pressure. The identity of all the vortices continues
beyond this point and even through the whole A-phase
region up to the melting pressure (supposing that the
8 phase can superheat so far). This means that the u

vortex becomes locally stable at higher pressures, and
that the transition to the v vortex is of first order. It is
worth noting that symmetries alone could have al-

lowed a second-order transition because the u vortex
has all the symmetries of the new vortex. Knowing
the order parameters of the vortices, it is simple to cal-
culate the behavior of various quantities at the transi-
tion. Especially interesting are the susceptibility ani-

sotropy and the spontaneous magnetization because
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FIG. 3, The energies of the three vortices as a function of
pressure. The energy is expressed in units fag(T)', where

fP is the condensation energy density of the bulk 8 phase,
and the logarithmic energy contribution 47r(y+2) ln[R/
(( T) ]/3 has been subtracted.

the measured quantities A. and ~ ' are proportional to
these, respectively. The present theory gives a 20%
jump upwards for h. (at T= 0.9T, ) and a 50% jump
also upwards for K at the transition from the new vor-
tex to the u vortex.

For experimental reasons the measurements'5 have
not been performed just below the superfluid transi-
tion temperature, but the extrapolated vortex-core
transition line is in very good agreement with the
present theoretical results. The experiments cannot as
yet resolve the jump of ~ in the GL region and the
50'/0 jump remains as a prediction. (This jump is op-
posite to that observed at low temperatures. ) In con-
trast, the jump of A, in the GL region can be measured,
and it agrees very well with the present theoretical
result.

Similar work has been done by Salomaa and Volo-
vik. I6

I acknowledge having benefitted from the work of
Dr. M. Salomaa and Dr. G. Volovik, which gave the
original impulse to the present investigation.
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