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Path-Integral Computation of the Low-Temperature Properties of Liquid 4He
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Discretized path-integral computations of the energy and radial distribution function of He in
good accord with experiment are presented for temperatures down to 1 K at saturated vapor pres-
sure. Results for the single-particle density matrix, momentum distribution, and condensate frac-
tion agree at the lowest temperature with previous ground-state calculations.

PACS numbers: 67.40.—w

The unusual properties of liquid He at low temperature were attributed to Bose-Einstein condensation by Lon-
don in 1938. The strength of the pair interaction between helium atoms, however, has so far prevented a first-
principles study of this transition in He. In this Letter we present a Monte Carlo discretized path-integral compu-
tation of the density matrix for liquid 4He for temperatures spanning this transition which reproduces many of the
experimental results and is in principle capable of arbitrary accuracy. We have assumed that the atoms interact via
the Aziz pair potential. 2

The calculations for the many-body density matrix, 3

p(R, R',p) = (R ~e t'"(R )-,

from which all equilibrium properties can be obtained, are based on the identity3

p(R, R',P) = J „p(R,Rt, r)p(Rt, R2', r) p(RM t,R', r)dRt dRM (2)

(3)

where r = P/M, M & 1, and the R variables denote points in the 3N-dimensional coordinate space. If an accurate
many-body density matrix is known at some high temperature corresponding to r then Eq. (2) allows its calcula-
tion at a lower temperature T = I/Mkv. The density matrix for Bose systems is obtained by summing over all per-
mutations of particle labels:

ptt(R, R',P) = (N!) 'Xp p(R, PR',P).
Both the integral over paths and the sum over permutations are performed by a generalization of the Metropolis

TABLE I. Computed potential and kinetic energies for various temperatures at SVP. The statistical un-
certainty in the potential energy is about 0.04 and 0.08 K in the kinetic energy. The densities used are
based on Crawford. ' The last six columns give the first three zeros and extremal values of the pair correla-
tion function it (r) = g (r) —1. The last row at 2.0 K is for distinguishable particles.
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Monte Carlo method. A discussion of how this is im-
plemented for distinguishable particles is given by Pol-
lock and Ceperley. In the extension of this work to
bosons several new techniques were required which
will be described in detail elsewhere, but before
presenting our results we briefly mention two of the
most important.

First (as in Ref. 4) the many-body density matrix at
high temperature in Eq. (2) is taken as a product of
one- and two-body density matrices which is exact in
the high-temperature limit. Here we have used the
full two-body density matrix rather than the "end
point" approximation of earlier work. This is more ac-
curate and allows larger values of i (smaller M) to be
used in Eq. (2). The high-temperature density matrix
used was typically for a temperature of 40 K and thus
paths of about twenty steps were needed for computa-
tions near T„. Had we been interested in only the
structural properties rather than, for example, the
kinetic energy, steps corresponding to 20 K or less
would have sufficed. We have checked the adequacy
of the step size by rerunning selected points using 80-
K steps. A thorough convergence study of the earlier
method was done in Ref. 4.

Secondly, a new method was used to construct trial
paths for the multiparticle moves necessary in the
sampling of the permutations of Eq. (3). The particu-
lar particles (here as many as four) for which permuta-
tion changes are attempted at one Monte Carlo move
are initially selected on the basis of the free-particle
density matrix. New trial paths are then generated by
a "bisection method" which first generates new mid-
points for paths and then new midpoints for the
remaining halves and so on, with the possibility of re-
jecting the new paths at any stage in the construction.
For permutations this is more efficient than the previ-
ous method of sequentially generating new paths step
by step since now improbable paths may be rejected at
an early stage in their construction, thus allotting
many more trial moves for a given amount of comput-
er time. The rejection step ensures that the accepted
permutations and paths reflect the correct density ma-
trix and not our initial guesses. Extensive tests of the
convergence of the distribution of permutations were
carried out.

Table I lists some of the temperatures and densities
at saturated vapor pressure (SVP) along with the po-
tential and kinetic energy and some structural proper-
ties where computations were done. The computed
energy and specific heat as functions of temperature at
SVP near T„are compared with experiment in Fig. 1.
The simulations are for a periodic system of 64 atoms
and each run takes about one hour on the Cray-1. The
finite number of particles used in these simulations ap-
parently depresses the computed energy in the tem-
prerature region 2.1 K ( T ( 3 K.
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The effect of Bose statistics on the radial distribution
function, g (r ), is small as shown at T = 2.0 K SVP in
Fig. 2(a) where the neutron-scattering results are
compared with the present simulation. The dashed
line shown at the first peak and first minimum is for
distinguishable particles [only the identity permutation
is allowed in Eq. (3)] and shows the slightly increased
spatial ordering attributed, via the uncertainty princi-
ple, to the decreased ordering in momentum space
when the condensate is suppressed. Similar good
agreement is obtained between the computed radial
distribution and structure functions and the available
neutron and x-ray scattering data at other tempera-
tures and pressures in the liquid phase.

The single-particle momentum distribution, n (k),
is the Fourier transform of the single-particle off-

2
T {'K)

FIG. 1. Energy and specific heat at SVP near T&. The
solid lines are the experimental values. [The energy was
taken from Ref. 5 and the specific heat from Wilks (Ref.
6).] The simulation results for the specific heat were ob-
tained by a differencing of the energy values. The energy
computed from ground-state simulations (Ref. 7) is denoted
by the cross. The experimental value for T& (2.17 K) is indi-
cated by the arrow.
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diagonal density matrix, n (r ) ':
fpa(rt rz r «t+» rz . & 'p)4rt '

n(r) =
fps(rt, r2, . . . , r„,rt, rz, . . . , r„;p)4r, . 4r„

which in terms of path integrals corresponds to one
open path beginning at rt and ending at rt + r. (Here
the r; are the coordinates of atom I' ).At temperatures
well above T„where only the identity permutation is
important, this open path involves only one particle
and is restricted to a distance on the order of the ther-
mal wavelength, k/(2mkT) t 2. This is primarily due to
the free-particle part of the density matrix somewhat
modified by many-body effects. Below T„ this open
path may involve a long cyclic permutation of many
particles and the end-to-end distance will become mac-
roscopic. The n (r) in Fig. 2(b) shows this change in
character on going through the transition. ' The initial
curvature is proportional to the kinetic energy and the
value at large r is the fraction of particles in the zero-
momentum state, the condensate. Figure 3(a) shows
this condensate fraction as a function of temperature.
The condensate fractions plotted there are obtained by
our assuming n (r ) to be constant beyond 5 A and
averaging the values between 5 and 7 A to obtain

no(T). Near T„n(r) reaches its asymptotic value
slowly and this procedure, because of the relatively
small system simulated and periodic boundary effects,
is not reliable. For example we find an no( T) value of
1.4% at 2.5 K, significantly above the experimental
transition temperature. Larger systems must be con-
sidered to determine the condensate fraction near T„.
The momentum distribution of the noncondensed par-
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FIG. 2. (a) Radial distribution function for He at 2 K
and SVP. The solid line is the neutron-scattering result
(Ref. 8). The circles are simulation results for bosons and
the dashed line is for distinguishable particles. (b) Single-
particle off-diagonal density matrix at 1.18 K (top curve and
open circles), 2.22 K (middle curve and closed circles), and
3.33 K (lower curve and open squares). Beyond 3 A the
vertical axis is enlarged by 10 times and the interpolating
curves are omitted. The crosses denote the ground-state
results (Ref. 11) which are indistinguishable from the

0
T = 1.18 K results for r & 3 A on this graph.
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FIG. 3. (a) Percentage of atoms with zero momentum,

no(T), in 'He at SVP. The indicated ground-state value is
from Ref. 7. (b) Momentum distribution from simulations
at temperatures of 3.33 K (solid curve), 2.22 K (dashed
curve), 1.18 K (open circles), and for distinguishable parti-
cles at 2.22 K (solid circles).
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ticles, Fig. 3(b), both is non-Gaussian and has a
temperature-dependent shape. The present simula-
tions are too noisy to test adequately the predicted
low-momentum singularities in this distribution. '

In the past, estimates of the condensate fraction
have been made'4 based on the hypothesis of Hyland,
Rowlands, and Cummings' that the pair correlation
function at large r has a constant shape below T„and is
multiplied by [I —no(T)] (intuitively speaking the
probability is that neither atom in the pair is in the
condensate and thus spatially uniform). We can only
test this at moderate values of r but an estimate of
It Q ( T ) based on the second maximum, h 3, listed in
Table I does not conflict with our results. Estimates
based on the first minimum, h2, at smaller r seem def-
initely too small. Another intuitive estimate'6 of
no(T) assumes the contribution of noncondensed
atoms to the kinetic energy to be unchanged below T„
where the condensate makes no contribution and thus
the kinetic energy is proportional to 1 —no(T). Figure
3(b) suggests that this assumption is only approxi-
mate; nevertheless this estimate, using Table I, also
accords with our results of the still-sizable error bars in
the np(T) estimates.

Efforts are under way to extend these simulations to
larger systems and to determine other properties of
'He.
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