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The Feshbach projection-operator formalism is used to derive the asymptotic effective interaction
potential between t~o atoms. Beyond the usual van der %aals potential, falling like x 6, three x
terms are also obtained: an attractive dipole-quadrupole term (absent in the positronium-
positronium case because of symmetry), a repulsive energy-dependent term, and a repulsive mass-
dependent but energy-independent one. This last term ~as not obtained by Manson and Ritchie
using an independent method.

PACS numbers: 34.15.+n, 36.10.Dr

Systems containing positronium (Ps) atoms are of increasing interest, partly because of modern experimental
techniques, ' but there are questions of theoretical interest as well. Some time ago Martin and Fraser3 made accu-
rate computations of the van der Waals coefficients (Cs) for Ps-Ps, Ps-H, and Ps-He systems, for use in future
scattering calculations. More recently, Manson and Ritchie pointed out that the Born-Oppenheimer approxima-
tion, used for ordinary diatomic systems, is inappropriate for objects as light as Ps. They used a certain complete-
ly quantal" technique and obtained corrections due to recoil. In this Letter we apply a different technique's that
has been very successful in describing the polarization forces acting between electrons and atoms, and we derive
finite-mass corrections different from those of Ref. 4.

We consider the scattering at low energy of a Ps atom by another hydrogenic atom consisting of an electron and
some singly charged positive particle of mass M. (This is not the most general possible case, but it does include
Ps, hydrogen, and muonium. ) In Rydberg units the Hamiltonian is

2 2 2 2'7+1 —'7+2 —'7-1 —'7-2+ +2 2

Since we are interested in long-range forces, we can assume that the otherwise identical particles are distinguish-
able, and since all the particles have finite masses it is important to measure the positions of the two atoms from
their centers of mass. This is accomplished by transformation to the following Jacobi coordinates:

Mr+1+ r+2+ r 1+r 2 r+2+ r

M+3 '
2

Mr+1+ r
Pl —1 +1 P2 —2 +2M+1 (2)

Here R is the center of mass of the whole system, and x is the vector joining the centers of mass of the two atoms.
It is our objective to derive an effective Schrodinger equation in the coordinate x to describe the scattering.

In these transformed coordinates the Hamiltonian takes the form

H = Ho+ T+ V, where Ho= 1+ 1 2 2

M Pl
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(We have omitted the kinetic energy of the total center of mass which can be set equal to zero. ) The interatomic
potential energy is

1

V=2 —1 ' x — —
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1+M 1 2 2p + —( —1)'p
I' = 1

The familiar Feshbach method begins with the definition of an open-channel projection operator P = P that
has the property that P%'=0 for large values of the interatomic distance x; here %' is the total scattering wave
function corresponding to some incident energy F. in the center-of-mass system. These conditions are not suffi-
cient to determine P, but the requirement that all the virtual excitations of the two atomic systems should be in the
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closed-channel subspace projected by Q = 1 —P leads to the direct product form

P = P, x P2, where P, =
I ls, ) ( 1 s, I.

In the usual way this 1eads to a Schrodinger equation of the form

P(H E)—PI+) +PVQ QVPI+) =0.

This is formally the desired equation, since it lies entirely in the P space, while the effect of all virtual excitations is
in the second, optical-potential term. Finally, we can define an effective one-body scattering function that
describes the relative motion of the two atoms, F(x) = (OIV), where the symbol (Ol = (ls&1s2I refers to the com-
bined ground states of both atoms, and we can rewrite the scattering equation in the form

—p, '('7„+k )F(x)+ U(x)F(x) =0, with p, =2(1+M)/(3+M).
Here the optical potential U is simply related to the second term in Eq. (6) and k is the momentum in the center-
of-mass system. To evaluate the optical potential in the asymptotic region, we will carry out a binomial expansion
of its denominator. 6 Let us make the following definitions:

Q (E —H) g = d —h —g Vg, where d = g (Eo —Ho) Q, and h = —
p, 'Q (V 2+ k2) Q.

If we assume for the moment that d, representing the spectrum of the two atoms, is greater than the other terms in

Eq. (8), which are the recoil and Coulomb perturbations, respectively, we can write

1 hJ ' 1 1

Q(E —H)Q . , dj d d
(9)

We will see shortly that the leading term in V for large values of x decreases like x ' and hence only two factors of
V need be retained in our expansion if U is to be correct to order x 8. Therefore the final form of the optical po-
tential is the following:

U(x) = X, =, (oI Vg(h' '/d, )gV Io); (10)

this corresponds to the nonretarded two-photon-exchange approximation. '
Expanding the potential V [Eq. (4)] for large values of x we obtain the leading (dipole-dipole) term

V —(2/x )[p) p2
—3(p~ x)(p2 x)],

which is independent of mass, and the next order (quadrupole-dipole) term

[5(p~ x) (p2 x) —pt(p2'x) —2(p~ x)(pt p2)],
3 1 —M (12)

which is seen to vanishs when M = 1, the Ps-Ps case. We will next evaluate all terms in the optical potential up to
order x, using these asymptotic forms.

In Eq. (10) the term with j= 1 gives the ordinary Born-Oppenheimer parts of U(x), since the mass-dependent
recoil effects come from the operator h. To see this, we expand the operator Q in a complete set of eigenfunctions
of Ho'.

l(ngn21 VI0& I'
g = lntn2) (ntn21, U'(x) =—,&(n, n2) =E„+E„—Eo,

n tnt
N) F2

(13)

where summation over all states n& and n2 (except ls) is understood. The j=1 part of the optical potential then
takes the form

U (x)=- C6
x'

Cs l(»t IPt(I) pi In') (»2IPi(2) p2ln2& I'
8, ~here C6=24

X n~n2

1 —M '1{»&IP2(1)ptlnt&(»2IPi(2)p2ln2& I'
and CS=60

j, +M n)n2

The j= 2 term in Eq. (10), including only Vdd in the potential, gives the recoil correction of order x
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that we can write

f '(ninq)hf(n, n2)U'(x) = , where f (n, n2) = (n, n2) Vdd)0)
[A(n, n, )]' (Is)

Since the optical potential is to be used only in the scattering equation (7), we can commute h to the right in Eq
(1S) and allow it to operate on F(x). Since the leading term in U(x) goes like x 6, we may set hF(x) =0 when-

ever it appears. In addition, '7„V= 0 since Laplace s equation holds in thc asymptotic region. In this way we o
tain the expression

I f '(nin2)2'7„f(nin2) '7„1'7„[f(n,n, )]2 '7„
U'(x) = ——

p [&(nin2) ]' p [5(nin2) ]' (16)

The second form of this expression requires only that f (nin2) be real, and once the summation has been carried
out no angular parts remain. Finally,

U'(x) = ——VD 1 6D 8

p x p,x 8x
(17)

where D is obtained from C6 by squaring of the denominators in Eq. (14). (The inconvenient form of this term
will be simplified by a transformation later. )

Finally, we consider the j= 3 term in the optical potential. This is

U'( ) =—,=, , f'(B.ag)a. a, ,
f"(nin2)h f(nin2)

6 ning 3 p2b,
(18)

where summation from 1 to 3 over repeated indices is understood, d is a rectangular component of '7„, and we
have suppressed the indices n, In Eq.. (18) we have again commuted h to the right and assumed that the optical
potentiai acts on a scattering function F. If we write

V = (2/x') [pi;p2; —(3/x') pi;p»x;x) ], (19)

carry out the differentiations indicated in Eq. (18), and recall that (0~pi;p»~nin2) (nin2(pikp2 (0) vanishes un-

less i = k and j = m, we obtain
1 1

( )
24G

8 ti,8,8 24G P
px x px Bx

i

(20)

(21)

(Only the first term is of the required order. ) At this stage our scattering equation has the following appearance:

6D a C8 48Gk'
x px t)x x p x

(22)——(V'+ k')F (x) +-
@

The derivative term in Eq. (22) can be eliminated by making the transformation9 to a new scattering function:
F(x) = exp( —D/2x6)x(x), where the phase shift is unchanged since x = F for large values of x. To order x the
only effect of this transformation is to modify the derivative term in Eq. (22) which becomes

where the constant G is obtained from C6 in Eq. (14) by cubing of the denominators. After we relate the second
partial derivative to the Laplacian and invoke the equation satisfied by F this yields the final expression

48G „, 3 a 3I. [I.+i]
p x x t)x 2x

2
C6 ( —Cs+ ISD/p+48Gk /p, )——(+2+k')x(x) — x( )+ x(x) =0.

jx x' x' (23)

Equation (23) is our main result. It displays the ordinary van der Waals potential and the next-order term, both
adiabatic terms not involving the reduced mass. The recoil or "first nonadiabatic term is new; in Ref. 4 it is ex-
plicitly stated that no such term should exist, but we seem to have derived it here in a straightforward manner. It
is essential in the derivation not to replace the gradient operator by the momentum' i k, even though '7 can prop-
erly be replaced by —k . The energy-dependent term is similar to one obtained in Ref. 4. %c emphasize that no
proof of thc convergence of this expansion in inverse powers of x exists; it is probably asymptotic and perhaps not
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Up, p, (x) =—

unique.
For these simple hydrogenic atoms it is possible to calculate accurate numerical values for all the constants ap-

pearing in the optical potential by adapting a technique used by Martin and Fraser. 3 Instead of constructing the
operator Q from a complete set of eigenfunctions of Ho as in Eq. (13), we use some convenient finite set of pseu-
dostates to approximate it. In Ref. 3 p-wave basis functions of the form I't (r )r Jexp( —otr) were used to diago-
nalize 00. Since the resulting linear combinations are orthonormal, they and the corresponding expectation values
of QHoQ may be used in place of ~n tnz) and E„,+ E„, in all expressions. In fact, this process converges extremely

rapidly; in Ref. 3 only ten terms are needed to evaluate C6 to ten significant figures. Using energies and matrix
elements from Ref. 3 we have computed D and G. The coefficient Cs involves d states, and we first carried out a
straightforward ten-term diagonalization analogous to that in Ref. 3. In addition, we were able to apply a
theorem" that relates higher multipole moments to dipole moments; the coefficient Cs obtained in this way
agreed to seven significant figures with the value obtained directly. The results for Ps-H (M=1836.15) are
C6= 69.670175, Ca= 636.1798, D = 53.114896, and G = 41.877 568. For the Ps-Ps case (M = 1) we get
C6 = 415.937 709, Cs = 0, D = 473.512 014, and G = 557.632 617. Finally,

69.6702 (503.626k —237.384) 415.938 (7102.68+ 26 766.4kz)
UpsH X =—

X6 Xs X6 x'

It may be interesting to find the range in x over which these asymptotic expansions are valid and useful, where the
second term is much smaller than the first. For the Ps-H case x » 1.84 and for Ps-Ps x » 4.13 are the ranges of
validity at kz=0. Since we have no information about the next term in the expansion, we cannot estimate the
magnitude of the error.

This Letter has given an alternative derivation of the leading corrections to the van der Waals interaction
between Ps atoms and both Ps and H, which differs from the previously reported form. " We have used a method6
that has proven useful in treating the similar corrections which appear in the long-range interaction of electrons
and hydrogenic atoms: The Feshbach projection technique enables us to work with scattering states and simplifies
the bookkeeping involving virtual excitations. We have also been particularly careful to treat the kinematics of the
Ps atoms correctly, by defining the interatomic distance to be between the centers of mass of the two atoms. We
would like to encourage further discussion of this interesting topic.
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