
VOLUME 56, NUMBER 4 PHYSICAL REUIEW LETTERS 27 JANUARY 1986

Comylex Langevin Solution of the Schwinger Model

H. Gausterer
Institut fiir Theoretische Physik, Universitat Graz, A-8010 Graz, Austria

J. R. Klauder

A 7' T Bel/ Laboratories, Murray Hill, %ex Jersey 07974
(Received» ~ovember 1985)

A complex Langevin method proposed previously is applied to the massive lattice Sch~inger
model. The coupled system is consistently treated by the complex Langevin equations.
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Standard Monte Carlo (MC) sampling appears to be
a successful method for studying lattice field theories
without fermions. As a result of the properties of a
Grassmann algebra (in Euclidean formalism the fer-
mions are represented by the generators of a
Grassmann algebra') no direct numerical simulation is
feasible. So far, different methods have been pro-
posed to elude the problem. 2 Starting with the Hamil-
tonian formalism of lattice field theories, Hirsch et al.3

developed a method to treat fermionie systems by
direct numerical simulation.

In previous work~ 5 we presented a technique to
construct complex fermionic path integrals. The
method is based on the Jordan-Wigner representation6
of fermion operators. Spin-coherent states7 are chosen
to be the intermediate states passing from the Hamil-
tonian formalism to the complex path integral. Be-
cause of a lack of positivity of exp( —5), MC sam-

pling has to be excluded during investigation of a com-
plex action. Under some conditions on the action,
complex path integrals ean be treated by solving an
equivalent stochastic process. ~ 8 Unfortunately there
appear factors I/sin8 in the Langevin equations associ-
ated with the complex path integral proposed in Refs.

4 and 5, which make the numerical treatment difficult.
With the introduction of Cartesian variables (x,y, z)

this problem does not appear. 5 9 A short sketch of the
derivation of the Langevin equations in a Cartesian
representation is published elsewhere. 5 For details we

refer to Ref. 9.
It had been shown5 9 that the complex Langevin

method has sufficiently good convergence properties
to describe simple fermionic systems: the free rela-

tivistic fermion system (d = 2) and the Thirring model

as an example of a self-interacting system. Here it is
our intention to show that the complex Langevin
method works well even for gauge-interacting fer-
mions. We chose the Schwinger model for the follow-

ing reasons. The Schwinger model is the simplest
model which shows QCD-like properties. The exactly
solvable massless continuum Schwinger model'0 and

even the massive one" have been extensively stu-

died. '0 '2 The lattice Schwinger model itself is often
used to test fermion algorithms and to test scaling-

limit properties of lattice field theories. '
To obtain a more simple form for the fermion action

we choose the temporal gauge. According to Susskind
and Kogut, i4 the fermionic system in an external field
will be described by the following Hamiltonian:

[c„~c„~,U„(t) + c„+ic„U„'(t)]+mc„'c„(—1)" .
28

We have chosen the arbitrary phase factor s„= ( —i )". This implies antiperiodic boundary conditions in Eq. (1)
for iV' = (k —1)4+2, k an integer. Following Refs. 4 and 5 we end up with the following fermionic action:

Xm+1 +m+1 m+1 Xm ym m

n, m =1

——, [ (x„x„+i +y„y„+i )Re ( U„) + (x„y„+i
—y„x„+i ) 1m ( U„) ] + m x —', ( —1)"z„}, (2)

with m = ma.
The interaction in the time direction is represented by the logarithm of the coherent-state scalar product, which

is a complex number. ~ 5 9 To describe the gauge-field dynamics and to quantize it we use the Wilson action. '5 We

choose a Cartesian representation [x=Re(U), y=Im(U)] for the gauge field for technical reasons, which we
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will discuss later. The full action in the temporal gauge now reads

n, m =1
gal+1 m+1 m+1 Xm ym ~m

——', [(x„x„+,+y„y„+,)x„+(x„y„~,—y„y„~, )y„]+ m x —,
' ( —1)"z„ I

.4-

.2-
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FIG. 1. The value of (Re{Uo)) on a 10x 10 lattice for
the pure U(l) theory (statistical errors are within the sym-
bols); the solid line gives the exact solution for (Re( Uo))
for an infinite lattice.

To be consistent, our intention is to use stochastic
quantization for the gauge field, too. Besides, it is not
possible to use MC sampling since hS/5 U C C. It is
very important to realize that not only the fermionic
part of the system is described by a complex stochastic
process, but even the evolution of the gauge field in
the auxiliary time. This is the reason for the use of
Cartesian variables to represent the gauge field, since
they are much easier to handle in the numerical pro-
cedure. For the derivation of the Langevin equations
for the gauge system we refer to Ref. 9.

We have been conscious of the fact that to use the
temporal gauge on a finite lattice means to make a
slight error. Since the pure U(1) lattice theory is an
exactly solvable model'6 we are able to obtain an idea
about the effects of finite size superposed by the ef-
fects of the temporal gauge for the pure U(1) theory.
Using an improved Runge-Kutta algorithm9'7 for
multiplicative vector Ito stochastic differential equa-
tions we simulated the pure U(l) theory on different
lattice sizes. The difference (Re( U&)) ~„~—(Re
&& ( Uo) ),where U~ stands for a product of transfor-
mations on a given plaquette, is very small (see, e.g. ,
Fig. 1). The fictitious-time step size h is h=0.01.
The value h = 0.01 appears to be the optimal choice,
also obtained in earlier calculations, since no signifi-
cant change in the results is obtained by going to
h ( 0.01. To obtain the results in Fig. 1 we generated

N, M

X P(x„x„+'+y„y„+'). (3)
n, m=1

for each point a total of 5000 configurations, discarded
the first 1000, and measured every fifth one there-
after.

It is one of the important properties of the massless
continuum Schwinger model that (Q (x)Q (x) )
c0.'o'2 From the result for (p(x)Q(x)i'(0)f(0))
given by Baaquie' one expects

(y{x)j(x)) I -o= 2~'~'

where y is the Euler constant. The order parameter of
our system is defined by

N

(y„j„)=(—X c„c„(—1)").

and divided by m this operator should be related to (4)
in the continuum limit; i.e.,

(4.4.)
--o m 2n(n. P)ti'

To determine (p„p„)/m with any accuracy would re-
quire extensive computation, but it is possible to get
significant evidence of whether or not the method is
working for the Schwinger model by an investigation
of (i[i„ill„) alone.

Equation (6) implies

(y„j„)=0(m),
Furthermore, we know from previous calculations'
which behavior for (ill„p„) we should expect, i.e., a
splitting depending on p and (Q„Q„)
for all p; thus the splitting has to ~anish for m —0.

Again using the improved Runge-Kutta algorithm
we made our calculations on a 10x 10 lattice. We gen-
erated up to 1000 configurations to thermalize the sys-
tem. Thereafter we made 10000 sweeps through the
lattice for the measurement of the order parameter,
where very fifth configuration was measured. We
used a fictitious-time step size of h = 0.01, which again
appears to be favorable. (It should be mentioned that
this step size might be much too large if more naive
numerical approximations are used. ) In Fig. 2 (P„P„)
is plotted for different values of p. We obtain a dis-
tinct splitting for 3 ~ m & 0, which vanishes for
m 0. For m & 3 the splitting is not observable
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1100/81 computer of Rechenzentrum Graz.
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FIG. 2. The order parameter (g„P„) on a 10& 10 lattice
for different values of P and for the free theory (statistical
errors are within the symbols or indicated by vertical bars).

within our accuracy.
As mentioned above, the evolution of the coupled

fermion-gauge system in the fictitious time is
described by a complex stochastic process, and thus
one might expect large fluctuations, especially in the
complex plane. No such effects were obtained. In the
coupled system the statistical errors are of about the
same magnitude as for the free fermionic system
(d=2). However, if we should remark that, in gen-
eral, it seems to be preferable to average over an en-
semble of shorter runs and not to make one long run
in order to improve the results.

One of us (H.G.) wishes to thank H. Grosse and M.
Wiltgen for fruitful discussions. The calculations were
performed on the VAX 11/750 computer of the EDV
center of the Universitat Graz and on the UNIVAC
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