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Phenomenological Mass Limits on Extra Z of E6 Superstrings
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We fit low-energy and pp collider data with a model based on a SU(2) 8 U(1) S U(1) elec-
troweak group, where the additional U(1) arises from E6 as required by symmetry breaking in some
superstring models. %e find that the extra Z must have a mass greater than 143 GeV if its decays
to exotic fermions are kinematically suppressed. The production and decays of this boson are dis-
cussed.

PACS numbers: 14.80,Er, 12.15.Cc

Recent work on superstring theories has led to the
interesting possibility that the E& 8 Es heterotic
string theory in ten dimensions yields, after compacti-
fication, a four-dimensional E6 gauge group coupled to
N = 1 supergravity. ' Furthermore, the breaking at
large scales is done by expectation values of order
parameters which are in the adjoint representation.
The low-energy gauge group that emerges must be
larger than the standard SU(3) 8 SU(2) 8 U(1), and
should contain at least one extra U(1) gauge factor. If
the low-energy model contains only one additional
U(1), the couplings of the extra Z boson to quarks and
leptons are uniquely determined, ' in the absence of
Z-Z' mixing. %e study the phenornenological impli-
cations of this extra Z boson and deduce limits on its
mass from a fit to low-energy neutral-current data and
the measured 8'and Z masses. Wc believe that this is
the most comprehensive study fitting all the available
data simultaneously. %e also obtain constraints on
the mass of the extra Z from the nonobservation of
high-mass e+ e pairs in pp collider experiments.

%e can write the neutral-current part of the
Lagrangcan as

and gz is given as usual by
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TABLE l. Decomposition of the 27 representation and
fermion quantum numbers.

~~c ——eA„J,"~ +gzZ„JP+ g'Z„'Jf „
where J," and Jf(=Jf —xwg') are the usual elec-
tromagnetic and Z-boson currents and J~,z'
= 2fLy"QfL +2ftt y"Qftt. The fermion fields belong
to a 27 representation of E6, and their decomposition
into SO(10), SU(5), and SU(3) multiplets as well as
the fermion quantum numbers Q (charge), I3L (weak
isospin), and Q [extra U(1) charge] are given in Table
I. The coupling constant g' with our normalization of
Q charges takes the value

1

3
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6

g' = e/(1 —xw )'i-', (2)
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where xw = sin Hw. The assumption in (2) is that the
evolution of the two U(1) factors from the grand-
unification scale to M~ is the same up to normaliza-
tion constants. This assumes that the masses of all

fermions in the 27 representation (and their super-
partners) are approximately degenerate. The fields Z„
and Z„' are, in general, not mass eigenstates. In super-
string theories the Higgs bosons that are responsible
for the breaking of the low-energy group are also in

the 27 representation„which has only SU(2)L doublets
and singlet fields. If v& and v2 are the vacuum expec-
tation values of the two doublets required in super-
symmetric theories and X that of the singlet, the mass
matrix is
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TABLE II. Parameters of the effective Lagrangean.
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Determination of xw, p2, and q from experiment
then yields limits on Mz and Mz, , which are the

eigen values of the mass matrix. The low-energy
parameters in neutrino-quark and neutrino-electron
scattering and the parameters involved in atomic parity

where Mz=M~/(1 —xw). The low-energy theory is

then described by the effective Lagrangean (of the
same form as in the work of Barger, Ma, and
Whisnant's )

~,rr =(46pl&&)f(p)Jz)'+(p2Jz+v]Jz. )'l. (5)

where p; and q are dependent on the mass matrix and
the coupling constants. For our case, with use of Eqs.
(2)-(4),

nonconservation and asymmetry in electron-deuteron
scattering for our Lagrangean are listed in Table II„
~here we use the same notation as Kim et a/. For
e+e JLt. +p we use the exact form for the cross
section with Z-resonance contributions and the Z-Z'
mixing angle given by tan28= —2p2q/(1+ p2

—p2q).
%e fit simultaneously all the low-energy data to

determine xw, p2, and q. ~e impose the restriction
——', & p2/q & —,

'
coming from Eq. (6b). There are 53

data points used in the analysis. Data from the follow-
ing categories are taken from Ref. 6: vN (eighteen
data points), ve (seven data points), and A,„(eleven
data points). We have also included low-energy data
from atomic parity nonconservation (one data point
from Bouchiat et ai. 'o) and e+e —p. +p, (twelve
data points from the compilation of Barbiellini and
Santoni"). The measured W mass gives a constraint
on x through the radiatively corrected" relation
M~ = (38.65 GeV)/Qxw. The measured Z mass
gives a constraint on the lowest mass eigenstate, Mz .
The Z mass eigenstates are related to the Lagrangean
parameters by

'I

Mz, , = -, Mz 1+xw(1+p2)/~'+ t11 —x~ (1+p2)/~']'+ 4xw p', /&'j'"
t

(7)

The following 8'and Z mass-data values" are used in
the fit:

M~ = 83.1 + 3.2 GeV, Mg = 93.0 + 3.4 GeV;

M+-= 81.2 + 1.7 GeV, Mz, =92.5 + 2.0 GeV

(UA1 Collaboration and UA2 Collaboration values,
respectively) .

The analysis gives the following best-fit values
(x2/d. o.f. = 31/50):

xw = 0 222-'o. o~3 p2 = 0 08-'o.24.

where an average radiative correction to the low-
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energy xw of —0.013 is included. The one- and two-
standard-deviation limits on Mz are

2

Mz, & 1.13Mz ——105 GeV (I rr),

on the Z2 mass. An extra Z with standard-model cou-
plings is excluded' belo~ 200 GeV. The application
of this constraint depends on both the Z2/Z, produc-
tion and the branching fraction ratios. Adjusted for
the different couplings of the Z2 to the u and d quarks,
the Z2/Z i cross-section ratio in pp collisions at
Ws = 630 GeV is approximately

& 1.02Mz = 95 GeV (2a.).
The mixing angle between Z and Z' is 8= —0.02
+ 0.06 rad.

The fact that e+e pairs from the Z2 have not yet
bee

(10)a.z,/a. z, = 0.28 exp[ —0.033 (M2 —M, ) ].
n detected at the CERN pp collider also puts a limit

~ The partial widths or Z2 decays are

I (Z, ff) = (xwM2/Mi)(1. 412 GeV)cf(1 —4mf/M2 )' (gv(1+2mf/Mz )+g„(1—4m)2/M22)),

= 0.45 (1.3),

for no (complete) phase-space suppression of Zi and

Z2 decays into three generations of exotic fermions.
Figure 1 shows the Z2 e+ e production rate rela-

tive to Zi e+e for the above two extreme cases.
Also shown is the CERN limit'3 which requires at 90'/0

confidence level

(13)Mz, & 107 GeV (143 GeV)

for unsuppressed (completely suppressed) decays to

where cf =1 for leptons and cf ——3.12 for quarks; the

gv and g„couplings can be deduced from the
Ji", = fyI'(gv —g„y5)f and Table I. The major differ-

ence from the corresponding expression for the Zi
partial width (aside from different gv and g„) is the
factor xwM2/Mi. Typical partial widths are given in
Table III, for the case in which decays to the exotic
fermions are not phase-space suppressed (i.e., mf ( 30
GeV); supersymmetric particles are assumed to be
heavy. Results for W partial widths are also given in

Table III.
The ratio of the e+e branching fractions is

8(Z2- e+e )
(12)

8(Z, e+e )

exotic fermions.
The Z2 could also be produced in e+e collisions.

The Z2 to Z, ratio of integrated total cross sections is

fries (Jz M (g2 +g2)
xw

f~~s ~z, M2 (gv+gw)i

In pp collisions the quantity

8(W- e.) (15)
rrz8 (Z e+ e )

= 0.24 . (14)

If there are three generations of neutral exotic leptons
(i z, /~/z, etc.) with masses (30 GeV, but all charged
exotic fermions are heavy (&50 GeV), then the

has been measured. The combined UA1-UA2 mea-
surement'3 is I/8 =0.125+0.023. The ratio of cross
sections and partial widths can be calculated. '" The
resulting constraint on the ratio of total widths is

r ~/I z= (8.9+ 0.9)/g =1.11+0.23 (16)

Channel

(Mi/Mi)1" z

(GeV) Channel (GeV)

hh

F. E+

OAF

ff tf

Total
width

0.02
0.11
0.18
0.18
0
0

4.22
(2.75)

0.23
0.07
0.004
0.07
0.11
0.11

2.27
(0.50)

0.24
0.24

4.16
(2.71)

TABLE III. Partial widths for Z and W decays to exotic
fermions, under the assumption of no phase-space suppres-
sion; note that the Zi partial widths scale with M2/Mi. To-
tal widths assume m, = 40 GeV and three generations of ex-
otics with no (complete) phase-space suppression.
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FIG. 1. The Z2 —e+ e to Z I
e+ e production rates

in pp collisions at Js =630 GeV vs the Z2 mass. The solid
(dashed) curve assumes complete (no) phase-space suppres-
sion of Z» and Z2 decays into three generations of E6 exotic
fermions. The shaded region is excluded by the present
UA1 and UA2 searches (see Ref. 13).
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predicted width ratio would be I /I' =0.71, which is
almost 2o- below the value in Eq. (16). Alternatively,
if all exotic fermions in each generation are roughly
degenerate in mass and contribute to Z decays but not
to W decays as a result of kinematic suppression, then
I /I =0.80 is predicted. On the other hand, if all

exotics are heavy, then the standard-model value
I /I z=0.98 is realized. When all exotics are degen-
erate and (30 GeV, then the result is again close to
the standard-model value.
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