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Weak Mixing Angles from Semileptonic Decays in the Quark Model
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%'e use the constituent-quark model to predict the electron spectra in semileptonic meson decays.
Particular attention is paid to the end-point region of the spectrum in 8 decays, which is important
to the determination of the b u weak mixing angle.

PACS numbers: 13.20.Jf, 12.15.Ff

In the standard model, the four weak mixing angles of the Kobayashi-Maskawa (KM) matrix are, like the quark
and lepton masses, fundamental parameters that must be determined by experiment. One of these angles is essen-
tially the Cabibbo angle. Two others can, in principle, be determined from 8-meson semileptonic decay since

dI (8 X+ e v )=IV, I
dI'(8' X+' e v )+IVbI dI'(8' X ' e v ) (1)

Here dI' is the differential decay rate, V,b and V~ are the b c and b u elements of the KM matrix, and
dI" (Ba Xq+ ae v, ) is the differential Bdecay rate induced by a full-strength b qcurrent. In the free-quark
approximation

I'(80 Xq+ Oe v, ) = I'r„,(b qe v, ) = (GF2mb5/192qr3) f(mq/mb), (2)

where f(x) =1—8x+8x —x —24x lnx.
It is known that 8 decays are dominated by the It c transition, so that V,b can be estimated via (1) and (2)

from the measured 8 lifetime. Recent attempts to extract V„b have concentrated on examining the electron spec-
trum dI'/dE, in 8 semileptonic decay, since for E, (Mtt —MD)/2M& the second term in (1) will dominate. This
end-point region of the electron spectrum is, of course, controlled by transitions to a few low-lying confined states
of the qd (or qu) system. Thus while free-quark decay should be a good guide to the total rate (2), one would not
expect a satisfactory treatment of the end-point region by such methods.

What is needed in this region is a method for explicitly summing over low-mass states X, and X„ to predict the
shapes and strengths of both spectra in the end-point region. In the absence of rigorous methods it is natural to
apply the quark model to this task. The constituent-quark model is a model for QCD in the confinement regime
which has had considerable success in describing hadronic structure. It is especially well suited (and well tested)
for describing the low-mass hadrons like those which control the 8 Xev, end-point spectrum.

The transition matrix element for the process 80 Xq+ oe v, is

T= ( GF/v 2) vqb u, y„(1 —y5) v„(xq (pgsg) I jgb I 8 (ptt) ), (3)

where jqtb is the b q hadronic current to which we referred above. The hadronic tensor

ltq~b" = Xs, &8(PB) IJqb'IX(pxsx) & (X(pxsx) Iiq~b IB(PB))

must have the form

(4)

Q'I + ~2 +
pg /(f2(ptt + crlptt ) (PB + tr2PJ) + tye (PB +Pit)p(PB Pg) ET~

if the electron mass is neglected, then the differential semileptonic decay rate for 8 —X~+ e v, depends only
on a, p+ +, and y and is given by

Pd'I, GF'Ma n Mx M~
32m', Mt2t M' M'

=
I Vbl' y+2pi+ 2x 1 — +y —4x' —y —yy 1 — —4x+y (6)

where x=—E,/M~ and y—= t/Mt2t= (ptt —pg)2/Mt2t. Of course the result (6) holds for other M M'e v, decays
with the appropriate substitutions; for decays to e+v, one must in addition reverse the sign of the term proportion-
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al to y.
We have estimated a, P++, and y for various chan-

nels L using the quark model, building up the total
electron spectrum dI /dx by summing over contribut-
ing channels. Our calculations were done in the non-
relativistic version of the quark potential model; pos-
sible improvements on this simplest model are dis-
cussed in Ref. 2. One assumption of our calculation is
that the creation of additional quark-antiquark pairs
can be ignored, so that the sum over final hadronic
states X is saturated by qd (or qu) states. That is, we

assumed that all multihadron final states result from
the decay of resonances. For convenience we also
worked in the narrow-resonance approximation, but
expect this detail to be of very minor importance to
dI /dE, . Our calculations were truncated by including
only the states X =1'SD, 1'St, 1'P2, P&, 1 Po, 1'P, ,
2'So, 2 S~', this was done both for practical reasons
and because at higher masses one would have to con-
sider gluonic excitations of mesons.

With these approximations we only needed to calcu-
late (X(p~s~) j!t'~B(pa)) for X a state of the ordinary
quark model. Our method4 was to make a correspon-

(D+(p. ) li;, IBO(p, ))

=j+(p. +p. )"+f (p, p. )~,— (7)

where f + are Lorentz-invariant form factors which
can depend on t = (ps —pD)'. Since u =0, p++
=!f+!', and y = 0, only the f+ form factor is actually
required in this case. In the weak-binding, nonrela-
tivistic limit, the matrix element of j,z between
8 (Ptt) and D+(pD) has exactly the form (7), with

dence between the Lorentz-invariant form factors f
which occur in the expansion of this matrix element
and those (which we call f) which appear in the
quark-model calculation of (X(pcs„)jI"IB(ps ) ),
where M is the weak-binding, nonrelativistic quark-
model state corresponding to the meson M. Form fac-
tors fwhich appear in terms that are of sufficiently low
order in momenta can be calculated in the quark
model. The corresponding form factors f are taken to
match onto f at the zero recoil point; higher-order
form factors are neglected.

As an example consider 8 D+, ~here 8 = bd
1'So and D+ = cd 1'So. In general

(Mtt+MD)f++ (Mtt —MD)f = (4MttMD)'t'Jf d'p yD[p+ (m~/MD)pD]y~(p),

(f+ —f-)pD = (4MaMD)"'J d'p PD[p+ (mgf/MD)PD]@tt(p) [p/2mt, + (p+ po)/2m, ],

for p~ = 0 and pD (& MD, in Eqs. (8) and (9), P(p)
are the momentum-space wave functions. Our pre-
scription is to take f+ (t —t ) = f+ (t —t ), where
t~ = (Mg —MD) .

To complete these calculations we needed explicit
meson wave functions. 3 We chose to use the Schro-
dinger wave functions appropriate to the usual
Coulomb plus linear potential,

V(r) = —4n, /3r + c + br,

with a, =0.5 GeV, c = —0.84 GeV, and b =0.18
GeV, and with constituent-quark masses m„= m&

=0.33 GeV, m, =0.55 GeV, m, =1.82 GeV, and

mb
——5.12 GeV. This simplified model gives quite

reasonable spin-averaged spectra of ud, cd, and bd
mesons, and extends satisfactorily to the cc and bb sys-
tems (where we do not need it) with a running
o., = 0.4 and 0.3, respectively.

A detailed account of our formulas for o, P++, and

y for the eight states X that we considered and of our
meson wave functions is given in Ref. 2. Here we will

simply show the resulting curves for dI /dE, for 8 de-
cay. Before doing so, ho~ever, we must address a
generic problem of our nonrelativistic calculation. The
reader may already have ~ondered how we can, for ex-
ample, calculate slopes of form factors, since such
slopes appear in coefficients of p~ and so may contain
contributions from relativistic effects. Indeed, the

answer is that our effective radii rf [f(p~) = I
——,

' rjpz+. . . ] include only wave-function-overlap
effects and so can be in error by terms of order I/m~.
In a truly nonrelativistic situation 1/m~ && rf so that
such corrections are unimportant, but in the cases at
hand we are not surprised to find that our calculated
pion and kaon charge radii are about 30% too small.
We have therefore compensated all of our effective ra-
dii by this factor to produce our best estimate of semi-
leptonic decay rates. With a few exceptions, to be dis-
cussed below, whether or not this defect is corrected is
of little importance.

In Ref. 2 we have compared our quark-model calcu-
lation of semileptonic decay rates with the known
meson semileptonic decays K m and D X, . The
comparison is satisfactory: both f+ (t) and f (t) in

K m- are predicted within errors, and in D X, we
predict correctly the K (495):K'(895) ratio, the shape
and magnitude of the total electron spectrum, and the
D K form factor. ~

Figures 1 and 2 show our predictions for 8 L,
and 8 X„, respectively. In each case we have
shown how the spectrum that we have calculated is
built up out of exclusive final states, as well as the
free-quark spectrum. In 8 X, we predict that the
inclusive spectrum is nearly saturated by D (1870) and
D (2020) production (representing respectively 19%
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FIG. 1. (1/I )dI/dE, for 8 —X,e v, showing the con-
tributions of D and D', and the total contributions from 1S,
1P, and 2S states; also sho~n is the corresponding free-
quark curve. Absolute rates can be obtained by use of I
=Q.SSX 10'

I VbI sec ' and I "'=0.49&10'4I VbI sec

FIG. 2. (1/I'"'")dI /dE, for 8 X„+e v, showing the
contributions of ~, p, the 1I' states A2, A~, Ao, and 8, and
the 25 states ~' and p', also shown is the free-quark curve
(I/I ""')dl'""/dE, . Absolute rates can be obtained by use
of 1

""= 1.18x 10'4
I Vb I

' sec

and 71'/o of the total). This is consistent with the ex-
perimental situation. Our predicted total semileptonic
rate is Q.Sax IQt

I V,bI' sec ' and leads us to extract
from experimentb a value of I V,b I

= 0.041 + 0.004
+O.QQS. We will discuss the uncertainties in this

determination associated with our calculation (the
second error quoted; the first error is experimental)
belo~. Of crucial importance for experimental studies
of the end-point region is that our spectrum, which is
softer than the free-quark spectrum, gives a good fit to
experiment with no b u contribution. To set a lim-
it on (or, eventually, to determine) V„b of course re-
quires the use of the 8 X„electron spectrum. In
this case one would not expect our calculation to have
exhausted the inclusive spectrum, and this is con-
sistent with the strong contribution of the radially ex-
cited states in this case. Our predicted b u spectrum
is now very much softer than the free-quark spectrum;
this will in turn considerably soften limits on
I V„b I'/I V,b I2 from the end-point spectrum.

From the success of our calculations for E —7r and
D X„and from studies of the sensitivity of our
results to the quark-model wave functions, we believe
that our predictions for 8 X, are quite reliable. In
particular, variations of our wave functions over a wide
range (encompassing, e.g. , wave functions which have
30'/0 larger radii) produce less than a 20'/o variation in
our absolute predictions for dl"/dE, and almost no
variation in the shape of the spectrum. The same is
true for our K m. and D —X, predictions. (Note
that our predictions for 8 X, can be further checked
by study of the 8 D and 8 D" components of the
spectrum. ) On the other hand, while the shape of our
predicted 8 —X„spectrum is also very stable, our ab-
solute prediction of dl /dE, is in this case quite sensi-
tive to our wave functions (or, e.g. , to our form factor
modifications). Thus while we believe that our

8 X„end-point spectrum prediction is the best one
that can be made, we would assign a possible S0% er-
ror to the absolute normalization of our curve.

Most attempts to extract I V„„I2/I V,bI2 from the
8 Le v, end-point spectrum have fitted with the
form (1), with the dI"s given by a QCD-perturbed
free-quark calculation in which extra parameters were
introduced to correct for nonperturbative effects.
%ith recent improvements in the data, these attempts
have, as might have been anticipated, encountered dif-
ficulties. b These difficulties have made it clear that the
predicted end-point behavior of the Ref. 7 calculations
was being controlled almost entirely not by perturba-
tive QCD, but by the ad hoc parameters introduced to
describe bound-state effects. Our calculation, in con-
trast, is especially suitable for the end-point region:
Not only is the dynamics of the quark model more ap-
propriate to this region, but also it correctly handles
the kinematics of the opening of new channels with
their appropriate quantum numbers. %e have argued
that it also predicts the 8 X, and 8 X„spectral
shapes reliably, and so can be used to extract I V,b I

and I V„b I with errors associated mainly with our pre-
dictions of the absolute normalization of these spec-
tra. 2

Our main conclusions are thus that the quark model
can be used to make reasonably reliable predictions
about the end-point region in semileptonic B decays
which are dominated by nonperturbative QCD. These
predictions indicate that the limits on I V„,, I /I V,b I will

be ~eaker than had been thought. As a balance to this
some~hat discouraging result is our prediction of the
partial rates to exclusive 8 —L„channels which sug-
gest the possibility of determining I V„b I from studies
of exclusive modes like 8 poe v, . Finally, we
note that as byproducts of this calculation we have
made detailed predictions of how the 8 I„
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8 L„, D L„and D Xz spectra are built up out
of exclusive channels. One application of these latter
predictions could be the extraction of

~ V,z~ from an
exclusive mode like D+ p e+v, to produce an in-
dependent check on the validity of the KM parametri-
zation.
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