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Geometrical Constraints and Equations of Motion in Extended Supergravity
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Consequences of geometrical constraints from integrability along all super lightlike lines are ex-
amined in N-extended supergravity theories. It is sho~n that these constraints give rise, through
Bianchi identities, to equations of motion of the conformal type for all forms of physical fields, ~ith
N & 4. Our results point to an integrability program for N & 4 supergravity similar to that for
N & 2 supersymrnetric Yang-Mills fields.
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One of the most attractive candidates to unify gravi-

ty with other existing gauge interactions is N-extended
supergravity (SUGRA) theory. ' An attractive feature
is that the superstring2 theories reduce to extended
SUGRA (and supersymmetric Yang-Mills) theories at
energies well below the Planck scale.

On the other hand, there still remains a long-
standing problem in particle physics: how to obtain
the exact solutions for equations of motion in a non-
linear system, such as non-Abelian Yang-Mills (YM)
or gravitational theories. There is no doubt that inves-
tigations into the integrability of nonlinear systems
shed much light on the nonperturbative aspects of
gauge theories and hopefully on the understanding of
vacuum structures of gravitational theories.

Several years ago Witten, in attempts to extend the
twistor formulation for the full Yang-Mills fields, ~ 5

pointed out that the second-order Yang-Mills field
equation has a simple interpretation in the extended
superspace as integrability conditions along spinorial
lightlike lines, and has a corresponding supertwistor
formulation. A set of lightlike lines is no longer a
one-dimensional object for N & 1, and the integrabili-
ty conditions become far from trivial. In fact, it can be
shown3 6 7 that for N & 2 the integrability conditions,
which we refer to as geometrical constraints hereafter,
imply Yang-Mills equations of motion via the Bianchi
identities. It has been shown recently that all solutions
to the N = 3 super YM theory must satisfy the con-
straint equations. a It has also been established recently
that the geometrical constraints possess many of the
integrability properties9" as found in the self-dual
Yang-Mills system, ' a linear system with spectral
parameters, infinite nonlocal conservation laws,
parametric Backlund transformations, Riemann-
Hilbert transformations, and infinite-dimensional af-
fine algebra of Kac-Moody. These formulations quite
possibly can provide a new route for the quantum su-
persymmetric fields.

In this paper we examine the consequences of
geometrical constraints for four-dimensional-space ex-
tended SUGRA theories formulated in superspace,

with arbitrary N. It is shown that for N & 4 these
geometrical constraints lead, through Bianchi identi-
ties, to conformal-like equations of motion for all
physical fields with s ~ 2, thus making the theories on
shell. We therefore expect a similar integrability pro-
gram for N & 4 SUGRA as for N & 2 supersymmetric
Yang-Mills. In addition it is well known that some
four-dimensional extended SUGRA has a natural
correspondence'3 with SUGRA in high dimensions.
Thus we expect similar conclusions for the SUGRA in
higher dimensions. The details will be discussed in a
separate paper. '4

In the literature, the superspace formulation has
been discussed for Poincare and conformal
SUGRA'5 '7 with arbitrary N, in four dimensions.
Especially Gates and Grimm'6 have found that certain
constraints for torsions give rise to the equations of
motion for s= 1, —', , and 2 physical fields for N & 4.
However, the constraints they adopted, which are
called conventional constraints in the present paper,
are different from the geometrical constraints and in
general are more stringent than the geometrical con-
straints we used here.

It is interesting and important to find out the conse-
quences of the geometrical constraints, since they nat-
urally have the same nice integrability properties as
those of the supersymmetric Yang-Mills fields. If the
geometrical constraints lead to equations of motion,
solving these constraints will lead to solutions to the
full field equations. The geometrical constraints in
N = 1 SUGRA had been discussed by Crispim-Romao,
Ferber, and Freund, 's but they did not result in equa-
tions of motion; thus it is unclear whether for higher N
the geometrical constraints give equations of motion.

From differential-geometry formalism in superspace
the covariant tensors, curvatures R and torsions T, ap-
pear in the graded commutator of t~o covariant
derivatives defined as in the ordinary gauge theories,
with flat indices,

«+A ~ +8~ ~AB ~38 +C. (1)
Among two kinds of Bianchi identities one becomes
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trivial, '9 once the following one is imposed:

I~ac =) j [(~~a)c &—~Tac T—~a TEc ) =o (2)

where $ represents a graded cyclic sum with respect to A, 8, and C.
In Minkowski space, a lightlike vector in spinor notation takes the form u =»i. X', where i~ is a commuting

number and the asterisk denotes complex conjugate. In the extended superspace we can find translation operators
along spinorial lightlike lines, (I/W2)(k D' +AD .,) w-here i =1 to N, whose square becomes the translation in

the direction of v, —iii r» with t» = (o') (8/Bx'). D and D are spinorial differentiations. The integrability
of connection fields along spinorial direction is nothing but the condition that the algebra by virtue of translation
operators accompanied by h. does not change even if D and D are replaced by the corresponding covariant deriva-
tives '7 and '7 (Ref. 3):

[V.', Vt,)+( -P)=0, [V,, V,,)+( —j)=0, [V.', V,j) = —2 S;e.,
These equations are our geometrical constraints. In addition, we also include the constraint T,b = 0, as in the ordi-
nary gravitational theory, so that the spin connection (0 )k'can be expressed in terms of vierbeine E '. As one
of the remarkable features of geometrical constraints, in clear contrast to the case of conventional ones, curvatures
associated with spinorial covariant derivatives get constraints:

(~a, ),D+(~-P)=(~ ),'+(~-/3)=(~' ),D=0.

It means, from the theorem of Dragon, '9 that we have additional information about torsions. On the other hand,
our torsion constraints themselves are much weaker than the conventional ones. In fact, from (1) and (3) several
superfields can be defined as

(~ )vvTj =, A j»~&. Tijg„=, g j„~. Tijg=, A[ij»k~ (4)

Note that A and 8 fields are absent and A is totally antisymmetric with respect to i, j, and k exchange in the con-
ventional constraints. ' " In Eq. (4), brackets indicate the antisymmetric part.

Let us summarize below the consequences of Bianchi indentities, which are necessary for the derivation of equa-
tions of motion. For simplicity, we will work in the linearized level of the theory, i.e., '7 or '7 is replaced by D or
D and all quadratic terms of dynamical torsion fields are neglected. For 1~„d=0:

D'[.A'j"»»+ (i- j)=0, (A[j"'"—, iD.'A [j"i'.)—+(i- j)=0. (5)

For l~„d=0:

D[,,A [ij'a„= [I/(N- I) ] [5„'D[,,A "j»p»„- (i —j)].
For I~~~ = 0:

D' A'j"" +(i ~ j)=0.
For l~ ~=0:

D[ i(A ij»"&» ——,'iD"A ij&» ) = —2i [Bi'(f jka» —', iQ [
A j"—

a» ) +cyclic sum of ij,k],
i

ly symmetrized.
We will first derive the equation of motion for the

s = 1 physical field, by showing the F superfield equa-
tion. Although the equation of motion essentially
stems from (7) and (8), the presence of the A field po-
tentially may ruin the derivation of the equation of
motion. Fortunately, however, we can find a suitable
redefined superfield,

g[ijk» —ji lij»k + i i[Di A [jk» a (i )]
It is obvious from the second equation of (5) that the
so defined A. field is totally antisymmetric under i, j,

where (R'ja )' (ir,q) &=—4i~ &f['~&», and ik =', n = cii;
braces denote the symmetric part.

The general property of the on-shell supermultiplet
is well known20; each physical particle is described by a
field with totally symmetric spinor indices and totally
antisymmetric internal indices. For example, the
lowest (8 = 8 =0) component of the superfield F[[ija»»

defined below has indices with such properties. It is,
in fact, the spin-1 field strength of our theory. Once
the physical spin-1 field is obtained, the s= —', and 2

fields can be constructed by picking up the lowest
components of superfields, X'[„a» —= D [„,F&~'I, . .

[~.a.
»

=—D[~,.X'„a», where the spinor indices are total-
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~'""' = —'~. X'" ' —2i(&'F, ~~&)+cyclic sum of ij,k) (»)
i

Equation (11) actually defines our physical s= 1 field F and an auxiliary field X in terms of g. It shouM be
s«essed he« that Eqs. (10) and (ll) are the same in their form as those analyzed in the paper of Gates and
Grimm" for their A'~"' field, which corresponds to our A "J'" field in the absence of g. In fact, if the g field
does not exist the second equation of (5) implies that our A field has totally antisymmetric internal indices and
A = &. The F field equation is thus obtained by the same prescription as the one adopted in Ref. 16, which we will

sketch very briefly here. We note from (11) the following two relations:

= —4i(N 2—)D ~F j~p~l, (N —2)D&iD ~F(&~I =0.

We next use two fundamental Eqs. (10) and (11) to get

(12)

and k exchange. Furthermore, from the first equation of (5) and Eqs. (6), (7), and (8), we can show the following
important relations:

Dl p, [ijk] + (I i) (lo)

D~iF!kp) = ap[.Z~&j'k'.

Applications of D twice on (13) yield with the help of (12)

u,'D I', F!~I= —(N -4)e,l'F!~[,+ -', ia,,X)»k[,

i(N —2)(N —3)e D~&F J&&[, =O.

Finally multiplying (14) by (N 2) (N —3)9 w—e obtain from (15)

(N —2) (N 3) (N —4)d: "d,~F —g~, = O,

(13)

(14)

(15)

(16)

(18)

D,,C.' = (sJ /N )D, ,c.',
D'[ Cbl + (i —j)=0,

~here

+ (N 2) (i/4)D,i ["l, —

which is the equation of motion for the s = 1 field. Note that the equations of motion are second order. Therefore
they are of the conformal type. Then equations of motion for s = —', and s = 2 fields follow from Eqs. (12), (15),
and (16):

(N 2)(N 3)—(N —4)8 —a,~zt„./i. [=Q, (N —2)(N —3)(N —4)a.'e,~ V,„, =O. (17)

Up to here we have not argued the equations of motion for the s = —, A, field itself and physical scalar field, say

~t [&ki[, which has not appeared in the Bianchi identities at all. However, we have a superfield defined [through
(10)] by P~'~kil —= D' A[ail, which can be interpreted as the field strength of the scalar "potential" field ~t .'5 Both
X and P turn out to satisfy their own field equations. Namely the D~~ operation and the successive D& operation to
(16) yield, through (13), the following two equations:

(N 4) g t) 'g[iJkl (N 4) g |1 P[[jkll 'Q

where we have omitted the factor (N —2) (N —3).
We thus obtain equations of motion for s=1, —, , the existence of such fields in our theory and learn

and 2 fields, which are second order in space-time dif- that these fields satisfy equations of motion for N ) 2,
ferentiation, and of the conformal type. '6 This is be- as the result of geometrical constraints. Though in (6)
cause of the many auxiliary fields. For example, if we we have presented only one equation, the same Bian-
eliminate the X field Eq. (14) tells us [with the help of chi identity has another independent consequence with

(12)] that the F field satisfies a first-order differential respect to the 3 and Bfields. The combination of such
equation, which appears in the on-shell Poincare- an additional equation with (6) and I -=0, and also
extended SUGRA. '5 However, so far we do not see a combination of the first equation of (5) with
the geometrical origin for such elimination of the X l~, =0, yield crucial equations, respectively
field. Also, the fact that our constraints are weaker is
manifested in the existence of additional "nonphysi- (19)
cal" fields such as 3 and 8, vvhich make the derivation
of field equations much more complicated. A detailed
discussion on the full field content of the theory will
be given in a future publication.

Finally, let us comment on another sequence of C' = (N —2)(N —3)B["I
physical fields with spins up to N/2, suggested to exist
in the extended conformal SUGRA. 2' We can confirm
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%e use these two equations to get

(22)

&For revie~ see J. Scherk, in Recent Development in Gravi-

D'l D Cbl = —2Nit)l CP'l. (21)

The application of D, to (21) gives t)l D,.C&» =0,
which implies the existence of a scalar "potential"
neld; D,C' .=a n. In terms of C and n, (21)
can be written as t)l . C&l = 0, where C' —= C'
—(i/2N)D' Q. Carrying out another space-time dif-
ferentiation we get an equation of motion, 0 C' =0
(simultaneously C' satisfy another condition
rJ D,C' =0, which implies that C' are "almost-
chiral" superfields). The C field is nothing but a
superfield, which contains the sequence of physical
fields we are interested in as its components: The
lowest components of D'l Db D„"Cstl [with totally
symmetric spinor indices and therefore totally an-
tisymmetric internal indices, as is clear from (20)], C
itself, and D,.C' are physical fields (or a field
strength of scalar potential), with I » s~ N/2, s = —,

'
„

and s = 0, respectively. It is now clear that these phys-
ical fields satisfy equations of motion,

o D'l. Dt, D„"C,'l =0,
where the number of D's runs from zero to N l. As-
the C superfield survives only for N ) 2, (22) shows
that the component fields are on shell for N ) 2.

The results mentioned in this Letter thus lead to the
conclusion that the geometrical constraints imply
equations of motion for all forms of expected physical
fields (including those with spin up to N/2, which is
greater than 2 for N ) 4) in the N ) 4 extended su-
pergravities. Our result puts extended SUGRA in
four-dimensional space with N ) 4 on the same foot-
ing as supersymmetric Yang-Mills fields in four-
dimensional space with N ) 2 for developing similar
integrability programs. We expect similar results for
their corresponding theories formulated in higher
dlmenslofls.
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