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Spin-Dominated Inflation in the Einstein-Cartan Theory
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In the framework of the simplest Einstein-Cartan generalization of the standard cosmological
model, it is shown that an inflationary phase may occur at a sufficiently early epoch, during which
the dominant contributions to the effective energy-momentum tensor are represented by the spin
density of the matter sources. The general features of this inflationary scenario are briefly dis-
cussed, and in particular the possibility of obtaining an expansion rate different from that of the
standard exponential inflation is stressed.
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It is well known that, according to the standard
four-dimensional cosmological model, a suitable infla-
tionary phase of accelerated expansion' can occur only
during a period of vacuum dominance. In fact, in the
case of a homogeneous and isotropic universe filled
with an ideal fluid with pressure p and energy density
p, the Robertson-Walker scale factor R(t) satisfies
the Friedman equation

R = ——', ~G(p+3p)

(the dot denotes the derivative with respect to the
cosmic time t); the condition R & 0 (required to solve
the horizon, flatness, and entropy problems2) implies
then the appearance of a negative effective pressure,
p ( —p/3, which can only be achieved, in this
scenario, with a dominant vacuum contribution to the
total stress-energy tensor. 3

The main object of this paper is to point out that if
the spin contributions of the matter sources are includ-
ed in the gravitational field equations according to the
Einstein-Cartan theory, then a period of effective in-
flation (R & 0) can occur at a sufficiently early epoch
when the energy content of the universe is spin dom-
inated. In this case the inflation is driven by the tem-
poral evolution of the spin-density tensor.

In the Einstein-Cartan theory, which is the simplest
example of Poincare gauge theory of gravity, ~ the
gravitational Lagrangean is the usual scalar curvature,
L~ = ( —g)'t2R (I'), constructed, however, with a con-
nection I' which is metric compatible but nonsym-
metric; that is I pi'= ( "p}—K p", where ( "p} is the
Christoffel connection and K pi' the contorsion ten-
sor, related to the torsion Q p"=I

1 pl" by K p"

p pv=x~~pe

where x = 8~ G is the Newton coupling constant
(c =1),

T pi'= Q pt'+5t'Qp "—5''Q

and G p and '7„are respectively the Einstein tensor
and the covariant derivative for the full nonsymmetric
connection I; finally

2 5L~
g)1/2 5g

5L

( —g)'t2 5K„p

are respectively the dynamical (symmetric) energy-
momentum tensor and the canonical spin-density ten-
sor.

As torsion is algebraically related to the matter spin
density, one can substitute spin for torsion everywhere
in Eq. (1), using Eq. (2), to obtain the following modi-
fied Einstein equations5:

G P(( })=x(1 P+i P), (4)

where G p(( I ) is the usual symmetric Einstein tensor
for the Christoffel connection, and

= —Q p" —Qi' p+ Qp" . Starting then from the total
Lagrangean L~+L, with L representing the matter
sources, and performing the variation with respect to
the metric g p and the contorsion K p„, one is led to
the following field equations4:

G P —(V„+2Q„„")(TP" —TPt' + T" P)

, p=x[ 4, ~,p 2, ~ &p +&~" & p+ 'g p(4~ i' —~"" +~&""~ )]lv Pj PV pv 2 fV P] P,VA,

represents the contribution of an effective spin-spin interaction induced by the generalized geometric structure of
the theory.

Since in this paper we are interested in an Einstein-Cartan generalization of the standard cosmological model (in
which matter is represented as an ideal fluid), we suppose that L describes a spinning fluid minimally coupled to
the metric and the torsion of the Riemann-Cartan manifold. Using then the variational formalism recently
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developed by Ray and Smalley, 6 one obtains that the canonical spin tensor is given by

r»=-'S ~u~
2

T I'=u& S»~u"u +(u'S»~) +0 'ul"S"~ u"—S~'~g ' -~~'S» +u'S~S p4;Ã pv

(co is the angular velocity associated with the intrinsic
spin, 6 and a semicolon denotes the usual Riemann-
Christoffel covariant derivative) .

It should be noted that this "improved" energy-
~-'= (?-') + ("~)

momentum tensor differs from that phenomenologi-
cally assumed in the context of a Weyssenhoff semi-
classical model of spinning fluid, 7 and the correction
terms in Eq. (7) are due to the treatment of spin as a
thermodynamical variable; the Weyssenhoff convec-
tive condition S &u&=0, however, continues to hold
also in this variational formalism. 6

According to the usual interpretation of the Ein-
stein-Cartan theory, we assume in this paper that S &
is associated with the quantum-mechanical spin of mi-
croscopic particles4 5; the effective sources of the mac-
roscopic gravitational field are to be defined then by a
suitable space-time averaging5 of the tensors? ~+ r ~

(which describe the matter sources in the microscopic
domain). In this case, it is important to stress that
even if the spins are randomly oriented, the average of
the spin-squared terms is not vanishing in general, 5 so and the«comb'nat'on g'ves
that the Einstein-Cartan field equations are different
from the general-relativistic ones even in the classical
macroscopic limit. For an unpolarized spinning field,
in particular, the averaging procedure gives, if we put
(S p) =0 and a2= —,

' (S iiS @) in Eq. (5),

(r &) = —,'Xo'u 2+ —,'Xa'g i'. (8)

(7)

gravitational sources in the macroscopic limit, i.e. ,

= (p+ p ——,
' Xa') u u~ —(p —,' Xa—')g I' (1.0)

A static cosmological solution corresponding to this
generalized energy-momentum tensor has been re-
cently investigated in Ref. 8. In this paper we assume
that p, p, a depend only on time, and that the
universe is spatially homogeneous and isotropic,
described by the Robertson-Walker metric. In a
comoving frame, where u"= (0, 0, 0, 1), we are led
then to the following modified field equations for the
scale factor (for simplicity we consider here a vanish-
ing spatial curvature):

R = ——,
' mGR (p+3p —8m Ga2), (11)

R = ', n GR—2(p—27rGa-2), (12)

—(p —2n Ga. ) = —3—(p+ p —47rGo- ),d R 2

t
(i3)

which generalizes the usual covariant energy conserva-
tion law to include the spin contributions.

Considering Eq. (11), one immediately obtains that
an accelerated expansion (R ) 0) can be arranged
even in the case of positive pressure, provided that the
condition

Moreover, (TF I') = (p+p)u u~ —pg ~ and, using
the definition of co in terms of the orthonormal tetrads
a~t'~ (see Ref. 6), in the case of randomly oriented
spins one has (a~i'~) =0 for i =1,2, 3, and (a„'4i )
=u„, so that (co ~) =u"(V„u )u& Equati. on (7)
gives then

( T,~&) = —xa.2u~u& (9)

8vr Ga2) p+3p. (i4)
is satisfied.

In order to discuss the general features of this spin-
dominated inflationary scenario, we suppose that, dur-
ing the epoch in which the spin-squared corrections to
Eqs. (11)-(13) are not negligible, matter can be
described as a liquid of unpolarized fermions with spin
t/2, and we assume, as in Ref. 8, the equation of state
p = kp (k ( 1 to avoid that the speed of sound
becomes greater than c). We have then a-
= —,

' (S ) =f ( n ) /8, where n is the particle number
density, and the averaging procedure gives8

(Note that, in this averaged limit, the intrinsic-spin
part of the dynamical energy-momentum tensor of
Ray and Smalley6 coincides exactly with that which
one would obtain by averaging the corresponding
phenomenological expression in the semiclassical
Weyssenhoff model; see for example, Nurgaliev and
Ponomariev. 8)

The simplest Einstein-Cartan generalization of the
standard cosmological scenario is obtained then, con-
sidering the universe filled with an unpolarized spin-
ning fluid, and solving the modified Einstein equations
G i ({ I) =XH ~, where 8 ~ describes the effective

2 & ~2~ —2j(t+k} 2/(&+k}
k (15)

where Ak is a dimensional constant depending on k
(note, incidentally, that if (S) =0 then (S2) is just
the square of the dispersion of the spin-density distri-

(S & is the spin density and u~ the four-velocity of the fluid), and the dynamical energy-momentum can be
decomposed into the usual perfect fluid part, TF ~, and an intrinsic-spin part Ts ~, that is T ~= Tz i'+ Ts ~,
where, with the torsion contributions written explicitly,
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bution around its average value, b, S~= ($2)
—(S) = (S )). In this case the integration of the
conservation law (13) can be easily performed, and
one obtains

and then H = 0 for p =p„where

2(1 ) 2/(t+k) (1+k)/(i —k)

7r Gt2
(22)

~ -3(&+k) (16)

where a is an integration constant.
It is important to stress that, in this model of the

universe, the spin contributions to the field equations
play the role of "centrifugal forces, " and produce a
bouncing which avoids the initial singularity. The
temporal evolution of this model is characterized then
by a maximal initial density, and in fact from Eq. (12)
one obtains p & p, , where

2/(i+ k) {1+ki/(1 —k)

Pi= (17)
m A2

The corresponding minimal initial value R; of the scale
factor is then, from (16),

&i3(& —k)

R —&1/3(1+ k)
] —a

4g 2/(1+k)
k

(IS)

(Note that for k =0 one obtains from these expres-
sions the minimal radius and the maximal density de-
duced by Kopczynski9 and Trautman'0 in the frame-
work of a model of universe filled with polarized
dust. )

As the condition (14) defining the inflationary phase
can be rewritten p & pf„where

'

(1 3 ) 2/(i+k)
' (1+k)/(1 —k)

(19)
n Gt2Pf=

it follows that as soon as the universe begins to ex-
pand, starting with an initial density p, and radius R;,
its acceleration is positive (R & 0), since p, & pf, so
that the earliest evolutionary stages of the universe,
according to this simple model, are characterized by a
spin-dominated inflationary expansion. The inflation
stops when the density pf is reached, corresponding to
a scale factor

i/3(& —k)

a i/3 ( i + k)

(I+3k) W
'/"+"' (20)

H = —4m G (p + p —4m Gcr2) (21)

and after that time the acceleration becomes negative
and the spin contributions negligible, so that the ex-
pansion follows the usual Friedman behavior.

It is interesting to observe that, as the density ranges
from p, to pf, according to this scenario the universe
goes through three different types of inflationary
phases. Consider in fact the Hubble parameter
H= R/R: From the fiel equations (11) and (12) one
has

(note that p; & p, & pf). At the beginning of the ex-
pansion we have p & p„so that the inflation is charac-
terized by R & 0, H & 0: This phase, called "super-
inflation, "has been recently discussed by Lucchin and
Matarrese. " When the density reaches p„we have
R & 0, H = 0, and this corresponds to an exponential
inflation, like that originally considered by Guth. Fi-
nally, for p, & p & pf, the expansion satisfies R & 0,
H & 0, so that the universe goes through a phase of
power-law inflation.

In conclusion, it must be remarked that a physically
interesting inflationary scenario should be character-
ized by an inflation factor Z =Rf/R; sufficiently high
to be able to solve the problems of the standard
model, 3 i.e., Z & 1030. For the simplistic model con-
sidered here this condition becomes 4/(1+3k)
& 10t' k1, and obviously it cannot be satisfied, un-

less negative values of k are allowed. In this case, it is
interesting to observe that unlike in the standard infla-
tionary scenario, a large amount of inflation can be
achieved even for k & ——,'; this requires, however, an
extreme fine tuning of the parameter /c In fact, put-
ting k= ——,'+e, with e &0, we obtain Z ~10 for
e & 10 ' . (Moreover, k &0 requires a substantial
contribution from the vacuum energy density, even
though, for ——,

' ( k (0, a sort of "vacuum with
spin" —see for example Soffel, Muller, and
Greiner'2 —is involved. )

It is possible, however, that this difficulty disappears
in the framework of a more realistic mechanism of
spin-dominated inflation, based on cosmological
models in which spinning matter is polarized' (for ex-
ample, because of the presence of a primeval magnetic
field'0'4), or torsion is propagating, like in the case of
a Poincare gauge theory of gravity (for a reveiw see
Hehlts and Hayashi and Shirafujit6).
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