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Theory of a Two-Level System Strongly Interacting with a Degenerate Fermi Gas
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A two-level system is treated which interacts with a degenerate fermionic heat bath. Arbitrarily

strong screening by fermions is taken into account. The hopping of the two-level system may be
spontaneous or assisted by the fermionic bath. By derivation of scaling equations it is shown for
the spin-~ case that because of the assisted hops the two-level system cannot be localized in one of
the states.
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Since the pioneering work of Caldeira and Leggett'
the problem of the tunneling particle coupled to a heat
bath has attracted great interest and the condition for
self-localization in one of the potential wells has been
studied in detail. 2 In these approaches the heat bath is
characterized by Bose degrees of freedom. The ques-
tion can be raised to what extent are the results modi-
fied when the tunneling particle is coupled to a degen-
erate Fermi gas instead of a Bose one. A possible real-
ization of this problem is a two-level system (TLS)
coupled to electrons in metallic glasses3 or in A-15
compounds. ~ Recently, Yu and Anderson (YA) have
examined the screening by electrons. In their theory
the scaling of the partition function in terms of the
electron bandwidth leads to decreasing coupling. The
similarity between that model and the bosonic case is
obvious, because that fermionic Hamiltonian can be
expressed in terms of Bose variables. s However, deal-
ing with metallic glasses, Vladar and Zawadowski
showed in the weak-coupling limit that the assisted
tunneling processes may lead to strong coupling. 6

Later Zawadowski and Zimanyi demonstrated the in-
crease of the scattering phase shift even for its large
values, assuming that the assisted tunneling processes
dominate the tunneling processes but both are weak.
That result was obtained for spinless fermions. In this
Letter a method is presented for the first time to our
knowledge which is capable of treating the spontane-
ous and electron-assisted tunnelings without restricting
their ratio in a unified framework and which is also ap-
plicable for arbitrary spin degeneracy N, .

We make use of the electron Hamiltonian

Ho= uFxk, (k —kF) ak, ak„

where uFlk —kFI & D and 2D is the electron band-
width. The vF and kF are the Fermi velocity and
momentum, ak, and ak, are the annihilation and
creation operators of an electron with momentum k
and spin s, and the density of states for one spin direc-
tion is constant, p.

The tunneling atom is placed in a double-well poten-

tial. If we consider an imaginary time variable 7, at
low enough temperatures for most of the time the
atom stays in one of the wells and the tunneling transi-
tions are rare and short. In this case we can apply the
TLS Hamiltonian

H» —b,
—~+, H» ——b, '~-, H» ——&'~'. (2)

Here the o' Pauli matrices act on the two possible
states of the atom. 5+- are the transition amplitudes
and 5' represents the energy difference of the left and
right states. The TLS-electron interaction is described
in an adequate spherical wave representation (l
= 0, I, 2, . . . ; m = 0) .6 The interaction Hamiltonian
consists of the following terms:

z + 't

Ht = X Vt'n~o'a~a~, H24= V~„o'+ a~a„,

2 zH2s= XV+„o+a a„, H26= V'2o'a a„.

The indices m and n refer to a combination of spherical
waves and to the spin simultaneously. The notation
a —gak is introduced, where the summation goes
over the wave number k of the spherical wave and
upl k —kFI ( D holds. The doubling of the V' term is
only a technical trick. Ht+Hz6 represents the differ-
ence of the two atomic states in the scattering ampli-
tude, while H24 and H» describe the electron-assisted
tunnelings. These terms arise from the fluctuation of
the potential barrier due to the electron density. In
the following we use a basis set for the spherical waves
such that V" is diagonal.

The main steps of our method are the following:
(i) We apply the path-integral method of YA8 for a

given TLS path a'(~) [lo'(~)1=1] and obtain the
partition function and the electron Green's function of
the Ho+ H~ problem for long times.

(ii) Using that electron Green's function we obtain
the peftufbatlve series in H2 = g;= tH2; for the parti-
tion function as the functional integral

Z = ZoJjD(T'(T) Z)Z2= ZoZt, (4)
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where Z; is a functional of the TLS path:
}P

Z;= TeXP — dv, . 7; i =

Here T, is the time ordering operator, 0;(r) is given
in the interaction representation with the unperturbed
Hamiltonian Ht' '}= J=(HJ, and ( ); means ther-
mal average also w'ith

(iii) We sum up the perturbative series with loga-
rithmic accuracy at high temperatures by means of
electron bandwidth scaling.

t'

Zt= (I+y' ) "exp X XS,S~In
P/ 25 i Ti —7'j'i

PN m, & l&j To

Step (i).—After introducing the matrix notation
8 = —arctan(7rpV") let us modify the parameters 5 +-

and b, ' in Eq. (2) in such a manner that

Tr(V" ) = Tr(V+ cos 8) = Tr(V cos25) = 0

and we define V"(7 ) = o-'(7 )V". In the next section
we extend the method of YA, outlined in Ref. 8, by
using the fact that V"(r) and V"(~') commute and
their trace is zero. We obtain for the partition function
and the electron Green's function7 for a given TLS
path

(6)

G(r, ~')= —
p cos Sexp —5XS;lnP 2 2

7 —T' 7r

Here r, denotes the time of the ith hop, y=mpV", P= I/kT, P denotes principal part, S;= ,
' [o'(7—,

—0) —(r'(~(+0) ) is the index of "spontaneous tunneling, " and we have arranged the 7; variables in increasing
order. Finally, ~o 1/D—is a cutoff and our expressions are valid provided {T TJ ~

0') To

Step (ii) The.—construction of the complete perturbative series for Z& leads to
OO }p +1 ~0Z= X(-1) X dry d7 d7,~0 i

x=0 ta)

&&Z& Tr(T, ~H2~ (Yg) 02. (~, ) H2. , (7))&(p, 0)}), (&)

where {a)=at, . . . , a~ stands for a given configuration of the indices n; = 1, . . . , 6 in the product of H2's and
S(P, 0) corresponds to the 5 matrix and Tr acts on the TLS spin matrices. When we introduce a (7 ) and a (7 )
as the interaction representation of a and a the following form is obtained:

OO

Z, = X(—1)~XX a ~ Tr a
N=0 la} }mn} /=1, l= 1

- ~- (a) (,)~'k ~ 'k+ i '0
X dry ' ' ' drt Zt T~

/=1
(9)

In the product II,'" (g, ') for a given {a,) the index
runs over only those values which are associated with
assisted (spontaneous) tunnelings. Calculating the ex-
pectation value in Eq. (9) we have to sum up all possi-
ble pairings of the operators where each pairing is as-
sociated with a G(7, 7') Now we c.onsider a single
term of the sum in Eq. (9) corresponding to a config-

(aI)uration {mn} with given matrix elements V „' at each
I I

interaction point with assisted tunneling. The {mn}
configurations are restricted to those which contribute
in Eq. (9). The products of Green's function with
same index p, form determinants. s The exponential
part of G(r, r') can be treated separately and the

remaining terms form a Cauchy determinant. The ab-
solute value of this determinant is

IV JIT T
J

where electrons interact with the TLS p„ times at the
moments i, . The "assisted tunneling charge" vector
T, is defined for given {mn} at site i by the com-
ponents T,„=5„„—5 „and T;=0 for spontaneous
tunneling. Here B„means the Kronecker symbol.
Now with use of Eqs. (6)—(9) the complete partition
function is

k+ I 0
X dTp . . dik dT~ To 'CXP Ci ~j
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Here the "total charge vector" of the hop at r; is

C;=T;+S,—5, (i2)

(a,.)
where (8)„=8„„andin Eq. (11) C; and y ' depend
on n, and in case of assisted tunneling also on min; R
is a combinatorial factor with the values +1 or 0 and
we introduced the hopping fugacities for a = 1, 2, 3 as
y~ =5 and for =4, 5, 6 as

(13)

It is worth mentioning that here the total charge vector
may depend on the incoming and outgoing electron in-
dices in contrast to Ref. 7 where the charge is intro-
duced only after the summation over the electron in-
dices was performed. 'P

Step (iii) Tur.—ning to the scaling we apply the scal-
ing procedure of Anderson, Yuval, and Hamann. "
We change simultaneously the scaling parameters rp
and the fugacities and charges to leave ZI unmodified.
Tp occurs essentially in two different ways in ZI'.

I

explicitly in the integrand and in the boundaries of the
integration. %e choose V'2=0 as the initial value.

Collecting terms of 7.
p explicitly appearing in the ex-

ponent and in the prefactor one sees by making use
g,C, = 0 that the changes are compensated, if

dy
' /d In7p=y' "(I——,

'
IC, I'). (14)

On the other hand, the change of 7p in the integra-
tion boundaries means that we have to perform a small
part of the integration explicitly for a "closed pair,

"
viz. when 7 p & ~,+ ~

—r, ( ~p+ dip. " We distinguish
two cases: when C; + C;+ &

= 0 and when C,
+C, +&e0. In the first case we follow step by step
Ref. 11. The integration over 7, yields a dip factor
only; then we expand the integrand with respect to
rp/7 (& 1 (r is the average distance of neighboring
hops) and perform the integration over 71+t , fin'ally,
we exponentiate back the obtained expression using
the smallness of dip. This way we arrive at the same
form as ZI but with scaled parameters and with a mul-
tiplicative factor. The scaled charges can be repro-
duced by scaling the phase shift 8 in Eq. (12) as

[d(8/7r)/d Inrp] = [y+, y ] —(28/m) [Tr(y+, y ) +y+y ],
where y+ =y~2~, y =y ', y+ =yt, and y =y 5~.

When the total charge of a closed pair is not zero, then
the expression of the integrand with respect to rp/7.
cannot be performed, and so we integrate over r, and
generate a new charge C = C, + C, + t at ~, + ~. These
charges, except one, correspond to scatterings in-
dependent of the TLS state, which are of no impor-
tance. The only exception generates V'2 with m&n
which must be added to V"„and occurs as the off-
diagonal part of the commutator in Eq. (15).

When we add the two contributions in the final
result, Eq. (15) is combined with

dy — 8 += +2 —,y-
d lnvp

—2g Tr 5
m'

(16)

dy '/d In7 p=y --+ {1—2Tr[(8/~)']],
dy'/d ln7p=y'.

(17)

These equations are consistent for 2X2 matrices
with Ref. 7 if the assisted tunnelings dominate and
with Ref. 6 in the limit 25/m (& 1.'2 These equations
are exact in the scattering phase shift 8 and are valid to
lowest nonvanishing order in the fugacities y, since
our assumption of rare hoppings requires y ((1
for all n Furthermore. , it can be shown that the other
generated new charges remain negligible ( —y ) dur-
ing the scaling. '3

When one solves Eqs. (15) and (16), 2)V, -di-
mensional subspace (a direct product of two spherical
waves and N, spin states) plays the important role,
~hose parameters increasingly dominate the others.

dz/d In~p=y, 2(1 —2N, z) —2zy2,

dy, /d lnT =4zy, (l —N, z),

dy/d Inrp =y (1 —4N, z2).

(20)

These equations have a repelling fixed line at y
=y, = 0. They are valid if y,y, (( 1, and this condi-
tion limits our scaling region. The temperature depen-
dences of our effective parameters can be obtained by
inserting ~p= T, which show the following features
incase W, =2:

The value of y, always increases with decreasing
temperature.

y decreases if z ) z, =2 3i2 and increases if z & z, .
Some of the trajectories may pass this value of z, ; thus
y(T) is not necessarily monotonic. Furthermore, y
never reaches zero in our scaling region since the in-
creasing value of y, stops the scaling.

The behavior of z is governed by the surface S de-
fined by dz/d Inrp=0, which separates the parameter
space into two parts. Trajectories starting with dz/
d In~p ( 0 approach S, but never intersect it, yielding
monotonic temperature dependence of z(T) with
dz/dT) 0. Trajectories starting from the other side
and far enough from S also approach it, but the condi-

I

In this subspace 8/m=za', y- =y, cr-+, ~here y, is
the strength of assisted tunneling; furthermore, 8 and
y~ are diagonal in the spin states. The o' operators
act on the spherical wave states. With use of the nota-
tion y=(y+y )'i2 the scaling equations in the re-
duced subspace take the form
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tion y,y, (&»tops the scaling before they reach 5
which behaves like an attractive surface. Finally, the
trajectories which start close to 5 may be nonmonoton-
ic in z( T).

The conclusions can be summarized as follows. The
existence of scaling has been demonstrated in the
simultaneous presence of normal and assisted tunnel-
ings for an arbitrary value of the phase shift 5. In the
case of absence of assisted tunneling the system
behaves like a bosonic heat bath where self-
localization may occur for a large enough phase shift
(N, ) 1). In the present model, self-localization does
not occur for N, = 2 if the starting value of the assisted
tunneling fugacity y, is different from zero as y, in-
creases as a result of the scaling, but that may occur
for N, & 2. These statements do not depend on the
approximations made, because the present theory is
exact in the limit y,y, && l. In the limit y, &) y the
phase-shift renormalization is toward the value
8 = —,

' rr/N, .
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