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%e describe a new method of measuring the Lense- Thirring relativistic nodal drag using
LAGEOS together with another similar high-altitude, laser-ranged satellite with appropriately
chosen orbital parameters. %e propose, for this purpose, that a future satellite such as LAGEOS II
have an inclination supplementary to that of LAGEOS. The experiment proposed here would pro-
vide a method for experimental verification of the general relativistic formulation of Mach's princi-

ple and measurement of the gravitomagnetic field.

PACS numbers: 04.80.+z

In special and general relativity there are several
precession phenomena associated with the angular
momentum vector of a body. If a test particle is orbit-
ing a rotating central body, the plane of the orbit of
the particle is dragged by the intrinsic angular momen-
tum J of the central body, in agreement with the gen-
eral relativistic formulation of Mach's principle. '

In the weak-field and slow-motion limit the nodal
lines are dragged in the sense of rotation, at a rate
given by

fI = [2/a'(I —e')'l'] J, (1)

where a is the semimajor axis of the orbit, e is the ec-
centricity of the orbit, and geometrized units are used,
i.e. , G = c = 1. This phenomenon is the Lense-
Thirring effect, from the names of its discoverers in
1918.2

In addition to this there are other precession
phenomena associated with the intrinsic angular
momentum or spin S of an orbiting particle. In the
weak-field and slow-motion limit the vector S
precesses at a rate given by' dS/dr = 0 x S where

0=———,vxa+ —,vx 7U+ ——J+1 3 1 3(J r)r
f3 2

(2)

where v is the particle velocity, a—= dv/dr —'7U is its
nongravitational acceleration, r is its position vector, r
is its proper time, and Uis the Newtonian potential.

The first term of this equation is the Thomas preces-
sion. 3 It is a special relativistic effect due to the non-
commutativity of nonaligned Lorentz transformations.
It may also be viewed as a coupling between the parti-

cle velocity v and the nongravitational forces acting on
it.

The second (de Sitter4-Fokkers) term is general re-
lativistic, arising even for a nonrotating source, from
the parallel transport of a direction defined by S; it
may be viewed as spin precession due to the coupling
between the particle velocity v and the static—g p o

= 0 and gtp = 0—part of the space-time
geometry.

The third (Schiff ) term gives the general relativistic
precession of the particle spin S caused by the intrinsic
angular momentum J of the central body —gtoe0.

We also mention the precession of the periapsis of
an orbiting test particle due to the angular momentum
of the central body. This tiny shift of the perihelion of
Mercury due to the rotation of the Sun was calculated
by de Sitter in 1916.7

All these effects are quite small for an artificial sa-
tellite orbiting the Earth.

We propose here to measure the Lense-Thirring
dragging by measuring the nodal precession of laser-
ranged Earth satellites. We shall show that two satel-
lites would be required; we propose that LAGEOSS 'o

together with a second satellite LAGEOS X with oppo-
site inclination (i.e. , with I = 180 —I, where I
= 109.94' is the orbital inclination of LAGEOS)
would provide the needed accuracy.

The major part of the nodal precession of an Earth
satellite is a classical effect due to deviations from
spherical symmetry of the Earth's gravity field—quadrupole and higher mass moments. " These de-
viations from sphericity are measured by the expan-
sion of the potential U(r) in spherical harmonics.
From this expansion of U(r) follows" the formula for
the classical precession of the nodal lines of an Earth
satellite:

R@0,(„S= ——fI
0

'2 3 2
cosI R@ 1+ 2e

2, ' J2+ J4 — (7 sin'I —4), +. . . ',
1 e2 2 8 a 1 —e

(3)
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where 8 @ is the mean equatorial radius, the J2„are
the even zonal harmonic coefficients of the gravita-
tional field, n —= 27r/P is the orbital mean motion, and
P is the period.

Clearly the orbital parameters n, a, e, and I must be
very accurately known to identify the classical contri-
bution to the precession. We investigate these points
below„but the difficulty of measurement of the
Lense-Thirring dragging is apparent from the following
facts: LAGEOS has a classical precession of —126'
per year, while its Lense-Thirring precession is only 31
arc msec/yr. Our principal difficulty arises from poor
knowledge of certain moments of the potential of the
Earth.

A way of overcoming this problem would be to mea-
sure accurately J2,J4,J6, . . . , by orbiting several
high-altitude, laser-ranged satellites, plus LAGEOS to
measure the Lense-Thirring effect. A better solution
would be to orbit polar satellites. In 1976, Van Patten
and Everitt'2 proposed the measurement of the
Lense-Thirring effect with two counter-rotating drag-
free satellites in polar orbit, i.e., counter-rotating in
the same plane perpendicular to the equator. Because
the classical precession is proportional to cos(1),
which vanishes for polar orbits with I = m/2, the con-
tribution to the nodal precession due to the quadrupole
and higher moments of the Earth is zero for polar sa-
tellites. However, in order to measure the inclination
with the technology then available to sufficient accura-
cy to extract the Lense-Thirring precession, it would
have been necessary to use two counter-rotating drag-
free polar satellites, measuring their distance with
satellite-to-satellite Doppler ranging while the satellites
were near the poles.

Today, however, the tracking accuracy of satellites
has improved dramatically. The knowledge of the or-
bits of some artificial satellites using ground-based
pulsed laser ranging systems will soon be sufficient to
measure general relativistic perturbations. '3'4 Conse-
quently, a general method'5' to measure the Lense-
Thirring effect would be to have two laser-ranged sa-
tellites with any arbitrary pair of opposite (i.e„ I and
180' —I) inclinations to allow the separation of the
classical and the relativistic precessions.

In particular LAGEOS, launched in 1976, has the
best known orbit of any satellite because of its high
altitude —semimajor axis = 12 270 km —and its design
to minimize air drag and radiation ' pressure. For
this satellite the Lense-Thirring effect, Eq. (1), due to
the Earth's intrinsic angular momentum J = 5.9
&& 104O gm cm2/sec, is ALT ——31 arc msec/yr, eastward.
For an artificial satellite the measurable quantity is
I1 —cu„where cu, is the Earth's time-dependent rota-
tion rate. The estimates of UT1—in effect the Earth' s
rotation rate —with the use of lunar laser ranging
(LLR) and very long-baseline interferometry (VLBI)

have an accuracy of fractions of a millisecond" of time
corresponding to an accuracy of a few arc milliseconds
of rotation. Consequently, the nodal precession is
measurable' with an accuracy of 1 or 2 arc msec/yr.
Therefore, the relativistic precession is quite detect-
able, if other contributions can be accurately account-
ed for.

In addition to the Lense-Thirring effect it is also
necessary to consider the Sun's de Sitter-Fokker ef-
fect, i.e., the spin precession of the system "Earth plus
an orbiting satellite" considered as a gyroscope, due to
the static field of the Sun. The average geodesic pre-
cession projected into the Earth's equatorial plane is,
for LAGEOS, '9 AnF = 17 arc msec/yr, eastward. The
relativistic node shift is dominated by the Lense-
Thirring effect, and is in an eastward direction.

The orbital parameters n, a, and e appearing in Eq.
(3) are measured with sufficient accuracy for our pur-
pose via the LAGEOS laser ranging. However, the
uncertainty in the inclination and thus in the classical
part of the nodal precession may well be the dominant
source of uncertainty in determining the relativistic
part of the precession. Currently, a four-year span of
LAGEOS orbital inclination residuals (from a dynami-
cally consistent reference orbit) when fitted with a
simple model of periods 1050, 560, and 280 days leads
to residuals about this curve on the order of 2 arc
msec. '8 These residuals are determined from indepen-
dent 15-d intervals of laser tracking data. The Lense-
Thirring effect is a secular effect, while most classical
perturbations are of a periodic nature. Hence, it is the
average (over a sufficiently long time) of the inclina-
tion error that concerns us. Under visual inspection
the residuals appear to be Gaussian distributed. In one
year, there are 24 such data points, so that after one
year one expects —2/424 —0.4 arc msec of random
error in the estimate of I for the span of that year, im-

plying from Eq. (3) a contribution to the nodal preces-
sion error of —3 arc msec/yr. This random error
presumably can be reduced somewhat by an even
longer period of data, though a careful study of sys-
tematic errors and of the statistics will be required to
estimate the ultimate accuracy. Secondly, there are
some correlations with our proposed second satellite
which will lead to an improvement in the model, and a
reduction in the residuals. For example, the effects of
uncertainties in tidal parameters ean be reduced by ad-
justing their values by use of data from the two satel-
lites; changes in the inclination due to indeterminacy
in the values of the J2„are equal and opposite for the
two satellites, " thereby, from Eq. (3), corresponding
to equal and opposite nodal precessions. Any change
in the inclination due to polar motion is already solved
for in the experimental value of the inclination 1(t),
and errors introduced should be relatively short
period. A recent paper20 shows 2-arc-msec residuals
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between VLBI and LAGEOS polar motion data, based
on 5-d data intervals. This supports our expectation of
average pole accuracy over longer periods at the 0.5-
arc-msec level or better in the near future, and thus
relatively small contributions to the uncertainty in the
inclination.

%e propose an experiment that is easier and less
costly to implement than polar satellites would be. ~e
propose that the forthcoming2' satellite LAGEOS II
(or some other future satellite LAGEOS X) be chosen
to have the following orbital parameters:

a LAGEOS X a LAGEOS —a

ILAoEos x = m —ILAoEos —+ I"

LAGEOS X ~LAGEOS —~

where a„ l„and e, are small. In other words, the
second satellite must have almost the same semimajor
axis, period, and eccentricity as LAGEOS but an al-

most supplementary inclination. Because the classical
precession (3) is linearly dependent on cos(I), with
this particular choice of orbital parameters the classical
nodal precessions of LAGEOS and LAGEOS X will be
nearly equal and opposite. On the other hand the
Lense-Thirring and the geodesic precession —which
are independent of I—will be the same for both satel-
lites so that, apart from other perturbations, the sum
of the two measured total precessions will be twice the
relativistic precession of LAGEOS. The philosophy of
this two-satellite proposal is that one uses external data
to fix the even zonal harmonics of the Earth's poten-
tial. One must conservatively take an external esti-
mate of the error in these terms. Unfortunately, the
present uncertainty 5J2„ in the numerical value of the
even zonal harmonic coefficients J2„ is of the or-
der'8 22 5J2„= 10 6J2. Since the Lense-Thirring pre-
cession A LT is 0LT = 6.9 x 10 A,i„„ the indeter-
minacy in the theoretical value of the classical nodal
precession is more than 10 times the relativistic effect
to be measured. The errors in these quantities limit
the acceptable differences a„ l„and e, between the
two satellite orbits.

In order to have less than 3% individual contribu-
tions to the experimental uncertainty (based on ex-
pected improvements in the uncertainties 5J2„/J2 to—3x 10 7) the differences a„ l„and e, between the
orbital parameters of LAGEOS and LAGEOS X must
be less than a, = +16 km, I,= +0.13', and e,= +0.04. Moreover, in order to calculate the total
precession O„„i it is also necessary to consider non-
linear contributions from even zonal harmonics; con-
tributions from nonzonal spherical harmonics; lunar,
solar, and planetary gravitational perturbations; atmos-

~LAGEOS g LAGEOS + ~LAGEOS + ~LAGEOS
exp class rel other (5)

where A,„~ is the experimentally measured value of
the rate of nodal precession and Q„h„ is the small rate
of advance, computable with sufficient accuracy, due
to classical disturbing forces other than those caused
by the even zonal spherical harmonics.

pheric drag, radiation pressure; and earth tides. All
these disturbing forces cause periodic and secular orbi-
tal perturbations that are very small compared to per-
turbations due to the Earth's quadrupole moment.
The nonlinear contributions from the J2„coefficients
are equal and opposite for LAGEOS and LAGEOS X'
and anyway, since the precession associated with (J2)
is of the order 0

iJ i2
= 10 Q,i„„ these contribu-

tions could be calculated with sufficient accuracy to al-
low the determination of the Lense-Thirring effect.
Similarly the secular nodal precessions associated with
the nonzonal spherical harmonics and lunar, solar, and
planetary perturbations can be calculated with suffi-
cient accuracy to allow their extraction. '8 Concerning
the nodal precession associated with radiation pressure
and earth tides, information on these perturbations is
extracted from the time variation of 0 when mea-
sured over a long enough period of time. '8 23 Because
LAGEOS is a spherical satellite and has a very small
orbital eccentricity, the error in the calculated secular
rate of nodal precession due to direct solar radiation
pressure is small' compared to ALT. Regarding the
direct solar radiation pressure, the main effect for a
nearly symmetric satellite is due to eclipses of part of
the orbit. The eclipse seasons for LAGEOS last
roughly 90 days and are separated by periods about
twice that long. When the Sun is at equal distances
from the satellite orbital plane, but in opposite regions,
that is, before and after the Sun crosses the orbital
plane, the out-of-plane components of the solar radia-
tion pressure force are nearly equal and opposite; the
contributions of the satellite eclipse to the nodal pre-
cession are nearly equal and opposite. For this reason
the error, over one year, in the calculated secular rate
of nodal precession due to the satellite eclipses is
small' compared to ALT. Systematic effects due to
the Earth's albedo and to small differences in the sa-
tellite albedo for changes in the direction of the solar
radiation with respect to the satellite rotation axis have
to be considered, particularly in terms of interaction
with eclipse-season effects. However, the prospects
for modeling the radiation pressure and the atmos-
pheric drag effects on the node with small errors are
good. ' A detailed analysis of various perturbing
forces will be the subject of a following paper. '9

In summary we have
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For the second satellite, we have

+LAGFOS x LAGEos+ ~ ~~class class class~ (6)

=3~ &eiees
COSI

a (1 —e')'
Qq 4ee,' —I, tanI + —

2
J2+. . . ,

2 a 1 —e
(6)

and the total nodal precession is

IILAGEos x I') LAGEos x+ I-'I LAGEos x+ 1'I LAGEos x 1'ILAGEos+ g II + I'ILAGEos+ j)LAGEos x
exp class rel other class class rel other

Finally, from (5) and (7), we have

I'ILAGEos ~ LAGEos+ I'I LAGEos x II LAGEos I'ILAGEos x Q QII rel e e exp + exp other other class

(7)

In conclusion we stress that because of the increased
tracking accuracy of the orbits of artificial satellites us-
ing laser ranging systems, the Lense-Thirring and de
Sitter-Fokker relativistic nodal precessions are now
significant and should be taken into account in the
theoretical determination of orbital perturbations of
high-altitude satellites such as LAGEOS. These rela-
tivistic nodal precessions should also be taken into ac-
count in geodesy calculations for a more accurate
determination of the irregular gravitational field of the
Earth, i.e., quadrupole and higher mass moments.

The experiment described above will provide an al-
ternative verification, together with the Everitt-
Fairbank experiment, 24 of Mach's principle and will

give at last a measurement of the Earth's gyrogravita-
tional or magnetogravitational field. Finally, we ob-
serve that orbiting a satellite with an inclination oppo-
site to that of LAGEOS will also give a better deter-
mination of UTI. 's'9 For these reasons I propose that
the forthcoming high-altitude laser-ranged satellite
LAGEOS II or a similar future satellite have an in-
clination Iof 70.06'.
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