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Density-Functional Theory and Freezing of Simple Liquids

W. A. Curtin and N. W. Ashcroft
Laboratory of Atomic an'd Solid State Physics and Materials Science Center, Cornell University,

Ithaca, New York 14853
{Received 17 March 1986)

A theory for the Helmholtz free-energy functional I' of inhomogeneous simple liquids is present-
ed in which hard-sphere perturbation theory is utilized to separate F into primarily entropic and
internal-energy contributions. The entropy of the hard-sphere reference system is obtained from
the weighted-density approximation and the internal energy is determined from an expansion about
the uniform-liquid value. The thermodynamic functions of a model Lennard-Jones solid, liquid,
and vapor are then calculated and the resulting p-T phase diagram is found to be in good agreement
with all aspects of simulation studies, including the Lindemann parameter along the freezing curve.

PACS numbers: 05.70.—a, 64.60.—i, 64.70.Dv

In an application of the theory of' inhomogeneous
liquids' 3 the dynamic solid is viewed as a highly inho-
mogeneous liquid characterized by a spatially varying
one-particle density p(r) possessing the symmetry of a
crystal. This constitutes a very stringent test for any
approximate liquid theories because the density p(r) is
very sharply peaked on a scale much narrower than the
characteristic length scale a. of the repulsive, short-
range interparticle interactions. This we know from
the smallness of the Lindemann parameter at the melt-
ing point. But the excess Helmholtz free energy F[p],
a unique functional of p(r), is inherently nonlocal on
at least the same characteristic scale o.. Consequently„

expansions of F about uniform-liquid' and local-
density approximations are suspect in such grossly in-

homogeneous systems. As an alternative, we have re-
cently proposed an approximation which builds in the
appropriate nonlocality of F[p] by means of a weight
function w:

FwnA [p] = d'r p(r)f"(p(r) ),

p(r) = „d3r' w (r' —r;p (r) )p (r'),

where f' is the excess free energy per particle of a
homogeneous liquid. The function w is determined by
the requirement that (1) reduce to the truncated per-
turbation result

F [p] = F'(p ) —oJ~ d r d r' c' '(r' —r;po)b p(r)&p(r')
2

in the limit hp(r) = p(r) —
po ( po, where perturbation

theory is valid. This condition leads to an equation for
win terms of ct2~(r;po) and f'and its derivatives with
respect to density. The resulting w reflects the range of
the nonloeality, which is also the range of c' ', the
direct correlation function of the liquid at temperature
T(l3=1/kT), and density po. But, in contrast to the
truncated perturbation expansion, (1), the weighted-
density approximation, or WDA, remains useful even
for the solid since it embodies an approximate summa-
tion of all terms in a perturbation expansion. In partic-

r

ular, the dependence of w on p(r) implies a self-
consistency that allows a subset of higher-order terms
in the perturbation expansion to be retained exactly.
This WDA has been applied to study the thermo-
dynamics of the hard-sphere (HS) solid and excellent
results have been obtained. %e note that similar
weighted-density functionals have recently been pro-
posed by Tarazona, s and also by Meister and Kroll.

Here, we present a systematic extension of the
WDA to systems characterized by potentials for which
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hard-sphere perturbation theory is an appropriate start-
ing point. Freezing in such systems is expected to ex-
hibit the same general behavior as in the HS system
since it primarily involves the same geometric packing
considerations arising from the strongly repulsive,
short-ranged part of the potential. Accordingly, we ex-
pand the free energy about an appropriately chosen HS
reference system, a common procedure for studying
both uniform and inhomegeneous systems, ' and then
use the WDA to calculate the reference system free
energy. We further expand the internal energy about
that of the isochoric liquid, which can be justified on
the grounds that in any dense phase particles sit in
nearly identical potential wells created by the poten-
tials of neighboring particles. The resulting theory is

I

used to calculate the fcc solid thermodynamics of a
model Lennard-Jones (LJ) system, with the properties
of the uniform phases obtained in the homogeneous
limit of the theory. The subsequent determination of
the LJ phase diagram is, as far as we are aware, the
first single theory to predict accurately the phase boun-
daries to temperatures as low as the LJ triple point and
also to give results for latent heats and Lindemann
parameters in good agreement with simulation
results. s 9

For any inhomogeneous liquid the excess free energy
may be systematically expanded about a suitable refer-
ence system. If the reference system is that of hard
spheres of diameter d, the excess free energy per parti-
cle may be written as

f[p] = fHs[p;d]+ (I/2N)„d3r d3r'(I (r' —r) pH(2)[r', r„p,d], (2)

where @ is the full pair potential. Here, f„s[p,d ] and pH(2s) [r', r;p, d] are the excess free energy per particle and pair

distribution function of the HS system and are not, in general, known. We use the WDA for the HS reference en-

ergy and obtain an approximation to the second term in (2) as follows. We first expand the exact f[p] about that
of the liquid to all orders:

1 "3 . . . 3f[p] = f'(p()) —X, d r„. d ri c(")(r„ri)ap(r„) ap(r().
n.

The c("' are the nth-order direct correlation functions of the liquid, which we write as c(")= cps) + b c("', defining
Ac(") as the difference between the actual c'"' of the full system and that of the HS reference system. We now (i)
use the homogeneous limit of (2) for the liquid free energy, (ii) sum the hard-sphere contributions to all orders,
(iii) approximate the HS reference energy using the WDA, and (iv) neglect the higher-order terms Ac(")(n ) 2),
which have only minor effects on f[p] since the main contributions due to cps are retained to all orders. Follow-
ing this sequence of steps we straightforwardly obtain the excess free energy of the inhomogeneous liquid as

(2 if[p] = fHs "[p;d]+ d3r @(r)p&~~)'(r) —
~ d3r d3r'bc(2)(r' —r)hp(r)Ap(r'),

po " (4)

which is our main result. Here, p~~~)' is the pair distri-
bution function of the HS liquid of diameter d. This
approach is an expansion of the full liquid correlation
functions about those of the HS liquid in which the
main correction Ac' ' is kept; it is nota density expan-
sion.

At large r we know that tI(c(2) = —PP. But, calcula-
tions of c(2) for the special case of the LJ potential'0 at
po.3=0.84, kT/a=0. 75 suggest that for any potential,
the structure, magnitude, and even sign of Ac(2)(r
& o ) are very sensitive to the choice of d. So, (i) to
prevent particles from interacting with their own po-
tential and (ii) to assure that all particles feel the po-
tential well $(r ) d), as dictated by the exclusion of
particles from the region r & d by the exact pH()', we
suggest the approximation

0, 0&r &r„„/2,
&c(2)= p~, r„„/2&—r & r,„, (5)

—/3y(r), r;„& r,

~here f„„ is the interparticle spacing, —~ the depth of

t
the potential well, and r~;„ the location of the well
minimum. The correlation "hole" for r & r„„ is
equivalent to the satisfaction of the sum rule

J d rp(r)g(r', r) = N —1 and prevents self-interaction
effects.

To both liquid and solid excess energies must be ad-
ded the ideal gas contribution

Pfd[p]=ln(poA ) —1+—' d r ln P1 ~, p(r) p(r)
Vo vo

~here A is the thermal wavelength. The last term on
the right-hand side of (6) vanishes in the liquid and is
positive for any spatial distortions in p(r), reflecting
the loss of entropy arising from the restriction of avail-
able phase space upon localizing particles.

We now turn to the particular case of the Lennard-
Jones potential, which may be accurately pararnetrized
by a sum of Yuka~a potentials as"

(x) (E/x) [e—a(x- 1) e
—b(x —1) ]
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Ps~ 3

0.75

1.35

0.855
(0.875)

0.934
(0.936)

0.960
(0.964)

0.970
(0.973)

1.026
(1.024)

1.045
(1.053)

0.9
(0.67)

6.4
(5.68)

9.1

(9.00)

1.1
(1.31)

1.5
(1.46)

1.7
(1.88)

0.127
(0.145)

0.126
(0.139)

0.126
(0.137)

2.75 1.060
(2.74) (1.113)

1.150
(1.150)

31.5
(32.2)

3.2
(2.69)

0.120
(0.149)

TABLE I. Theory (simulation, Refs. 8 and 9) results for
liquid and solid densities, pressure I', latent heat TAS, and
Lindemann parameter L along the Lennard-Jones liquid-
solid coexistence curve. Calculated densities are accurate to
within 0.005, pressures within 0.1, and latent heats within
—10'/0.

potentials for which hard-sphere perturbation theory is
an appropriate starting point and for which the re-
quisite 5c' may be similarly determined. As noted,
the freezing transition is dominated by the change of
excess entropy in the liquid into ideal gas entropy in
the highly localized solid (see Fig. 1). The internal en-
ergy basically modulates the temperature and density
dependence of the underlying hard-sphere transition.
With the present theory of the freezing transition in
non-HS systems, we are now in a position to study
the many interesting problems involving solid-liquid
boundaries, which cannot be studied by use of phonon
theory. Solid-solid transitions are also within the scope
of the theory and hence an understanding of the ten-
dency of many materials to change from close-packed
structures to a bcc structure just prior to melting' may
soon be within reach.

This work was supported by the National Science
Foundation through the Materials Science Center at
Cornell University (Grant No. DMR-8217727A-01).

tion theory. Deviations at high T arise primarily from
the well-known problem of choosing an appropriate d
to represent the rapidly varying potential at r ~ 0.95a.
At high T, the phase boundary is governed only by the
location of the underlying HS transition and d.

Coexistence data for the liquid and solid are com-
pared to simulation data in Table I. The coexisting
densities, pressures, latent heats, and Lindemann
parameters L are all in good agreement with simula-
tion. s 9 The latter implies that the Debye temperature
is also given correctly for the solid, which in turn
determines many temperature-dependent quantities
such as the specific heat and the thermal expansion
coefficient. This result is in sharp contrast to results
obtained with the truncated perturbation expan-
sion, " which give satisfactory thermodynamic quan-
tities such as the pressure but also give values of L at
least a factor of 2 smctller than observed. t4

It is important to examine the effects of alternative
choices for b, c'2). We have done this by taking
Ac = —e, r & r;„, rather than the form given in
Eq. (5). In this case, self-interaction effects are now
deliberately included and these lower the free energy
of the solid. The coexistence densities are thus also
lowered, with the strongest deviations occurring at low
T At kT= 0.75e, coe. xistence occurs somewhere
beio p, a.3=0.955 and pta. 3=0.835. By kT=1.15e,
however, the coexisting densities are at p, a'=0.995
and pter = 0.905, only a few percent smaller than pre-
viously determined.

The approach taken here to study the dynamic solid
should be valid for the many systems characterized by
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