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Realization of a smitten Critical Theory in (CH3)4NMnC13
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The exact T=O susceptibility times spin-wave velocity of an isotropic spin-s antiferromagnetic
chain is calculated by use of the %'ess-Zumino-~itten o. model, with Kac-Moody central charge
k=2s, as the critical theory. The result, Xu, = k/2m, agrees exactly with Bethe Ans-atz results for
integrable models and well with numerical results (s = ~), Fisher's classical limit, and experiments

on CuCl2 2NC5H5 (s = ~) and (CH3)4NMnCl3 (s = ~). (Xi is also calculated exactly for s = ~
and arbitrary planar anisotropy. ) This suggests that (CH3)qNMnCl3 is an experimental realization
of this new universality class.

PACS numbers: 75.10.Jm

It has been known for some time' that the low-

energy, critical properties of massless quantum antifer-
romagnetic chains are given by (1+1)-dimensional
relativistic quantum field theories with the spin-wave
velocity u, being the effective velocity of light. Thus
their zero-temperature (T) behavior is that of two-
dimensional classical systems at finite T. The s= —,

'

system with Hamiltonian

H= X,[S,"S,"+i + St'St'+i +aS;S;+i ]

is in the same universality class as the two-dimensional
classical »y model. It was argued elsewhere2 3 that iso-
tropic systems (5 = 1) of higher half-integer spin be-
long to new universality classes that have not yet been
seen in two dimensions. These are conformally invari-
ant nonlinear tT models, discovered by Witten, 4 which
have Wess-Zumino topological terms with integer cou-
pling constant, k. Alternatively, they can be viewed as
representations of the SU(2) Kac-Moody algebra with
central charge, k. It was argued" that the critical
theory for half-integer s is the Wess-Zumino-Witten
(WZW) model with k = 2s. [Integer-s chains with the
quadratic Hamiltonian of Eq. (1) are expected to be
massive. 5] The k-1 model is equivalent to a free
massless bosons and so the s = —,

'
system is in the same

universality class as the classical »y model (and many
other systems). However, the higher-k models have
nontrivial interactions and belong to new universality
classes. All critical exponents have been calculated ex-
actly, 7 for all k. In this Letter we show that the zero-
temperature, zero-field susceptibility is a universal
number (when scaled by u, ) proportional to k. This
allows a direct experimental test of the critical theory.

We begin with s= —,
' and b =0, the model solved

exactly by Lieb, Schultz, and Mattis. s It is mapped,
via the Jordan-Wigner transformation

n —1

S„=exp i~ Xf f~ Q„, S„'=f„Q„——, , (2)
1

onto a free-fermion system:

0=
2 Xl(~&tlii+t+~t+t~&) = Xtttll«4«cosq.

where

f„=( —1)"X exp[iqn]Pq/JN,

q =2mn/N (n =0, 1, 2, . . . , N —1).
The total z spin becomes

x'= Xi(y,'y, —,
' ) —= X, (n« —,

' ), — (5)

where nq
=

Q&Q« is the occupation number (0 or 1) of
the momentum-q state. The zero-field susceptibility
is'

x = ((A')')/TN
= (1/4TN) X sech2[cos(q/2T)]. (6)

As T 0 the sum is dominated by q = +~/2, the
two branches of the Fermi surface, giving

X (1/2T) J (dq/2n )sechz(q/2T) = I/n (7).
Since the Fermi velocity is u, = —(d/dq)cosq ~ i2=1,
we may write & = (I/~)u, (at T=0). It is instructive
to derive this T=O result another way. Since only
q = + n/2 contribute we may write

y(n) = i&1 (n) + ( —i)&~ (n),
where QL and Qq are slowly varying. H becomes a
relativistic free-fermion Hamiltonian and we may write

&'= J d»:tliL&L+p gt[ig =„d».Jo(»), (9)

where the colons denote normal ordering in the rela-
tivistic free-fermion vacuum. Jo is the relativistic fer-
mion number density. This can be bosonizedto by use
of J„=«„„8"$/Jn, where @ is a conventionally nor-
malized massless free boson. The normalization in
this equation can be fixed by the current commutator

[J„(»),J„(y)] =«„„8'(»—y)/n . (10)

Finally X can be calculated with use of the finite-
temperature boson propagator:

X = lim q'T X [q'+ (2nm T)'] 1

1P T it~0 m'
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Now consider arbitrary b, ~ 1. The critical theory is

expected to remain a free boson. ' Working always
with a conventionally normalized boson we may write
J„=y~„„8"$ (setting the velocity of light equal to 1).
The problem is to find y(h). We do this by observing
that' Q, Si S,+, = —2if dxQz Qti .The bosonized
form is' /Lpga

—exp[iP(pt, —$n)], ~here $t, and

$n are left- and right-moving parts of $=@L +alii.
i8(4) is known exactly from the Bethe Ansatz'":
P2=8cos '( —b, ). y can then be fixed by the
demand that the commutator

[XiSi', X Si S+i ]= —2X Si S

be correctly reproduced. Since

[giy(x), exp{iP(yL —4n) I ]

(12)

= Ps (x y)—exp[iP (@L—
pit ) ], (13)

we conclude that Jo ——(2/p) Q,p, and
=4/p =1/2cos '( —5). The spin-wave velocity u,
is not known exactly, as a function of b; it appears in
X in a way determined by dimensional analysis. Note
that u, X(h = 1)= I/2m = —,

' u, X(h =0).
We now reconsider the isotopic s - —,

' model
(b, =1). A different fermionization2'2 which mani-

festly preserves the SU(2) symmetry is useful in this
case: S = ,' —itl cr t'Q& .The fermions now carry a spin
index and the constraint Q Q =1 (one particle per site)
must be enforced. Since the band is half filled we
again introduce left- and right-moving fermions as in
Eq. (8):

~'=
2 „dx[4t.~&t. +An~&~] (14)

If we treated the fermions as being noninteracting we
would obtain a value of X one-half as big as for b, = 0
(as a result of the two explicit factors of —,

' and the sin-

gle sum over spins), X = I/2m', . (This value was ob-
tained above. ) In fact the fermions are interacting in
this case. The critical theory is derived by introduction
of separate bosons for charge and spin. The charge bo-
son is massive and can be eliminated leaving either a
massless free spin boson, 'z or equivalently a k =1
WZW a model. 2 However, the only thing that matters
for our purposes is that the current two-point function
at low momentum is unaffected by the interactions.
The reason is that this two-point function is uniquely
fixed by current conservation and conformal invari-
ance up to an overall constant. The constant is propor-
tional to the central charge, k, of the (Kac-Moody)
current algebra:

[J'(x ),J'(y )i=is'~J'(x )&(x —y )+(ik/4')&"5'(x —y ). (is)

(Here J' are left currents and x = xo —xi.) k is only
permitted to take on integer values (the Kac-Moody
algebra only has unitary representations for k integer).
Thus k cannot get renormalized in any continuous
fashion (this property can also be derived~ by topologi-
cal arguments in the WZW models) and so retains the
value k =1 which it has for the free-fermion current
of Eq. (14).

This approach easily generalizes to higher spin iso-
tropic systems. To obtain spin s we introduce 2s
"colors" as well as 2 spins, Pi (a = 1, 2; i = 1,
2, . . . , 2s) and write S= ,'Qt' cr t'-Q,

& with the con-
straint Q

'
Q&

= SJ (2s particles per site in a color
singlet state). Again the band is half filled and so we
introduce iliL, and ftt as before:

&'=
2 „d [OL'~&zi+0n'~&ni] (i6)

Treating the fermions as free gives a value of X which
is 2s times as big as for spin —,', because of the sum
over 2s colors: X=s/m~, . In fact, the fermions are
not free. The critical theory is derived2 by introduc-
tion of separate bosons for charge, color, and spin.
The charge and color bosons are massive and decou-
ple, leaving only the spin bosons which comprise the
k = 2s WZW o. model. The essential point is that the
free-fermion current algebra is not modified by this
decoupling (i.e., the central charge, k =2s, is not re-
normalized) .

We now compare with other results. The spin-s iso-
tropic antiferromagnet is Bethe Ansatz -integrable'3 for
a special choice of nonquadratic Hamiltonian:

2s i

H, = X X —XPi(S, S,+i),
l-1 k-1

where Pi is the projection operator onto spin I for a
pair of neighboring sites. (This can be written as a 2s-
order polynomial in S, S,+i.) For these models'~
v, =n/2 and X =2s/n z, in agreement with the present
result, which we expect to be universal by the above
arguments. Apparently, modifying the integrable
Hamiltonian produces a mass gap in the s-integer
case.z s In the half-integer case we expect the mass
gap to remain zero and Xv, to remain constant for a
wide range of Hamiltonians, including the realistic
quadratic one. 's This is so because k cannot vary con-
tinuously and it seems rather unlikely that it would
make integer jumps as H is varied. However, the
latter may not be completely impossible and it might
seem natural that all quadratic half-integer-s models
are in the free-boson (k = 1) universality class. In this
case, one has Xu, = I/2n, independent of s. Thus it is
important to compare with other measurements.

In the s = —,
' case there is no dispute. The integrable

model is quadratic. Exact diagonalization of a finite
chain'6 gave a number in excellent agreement with the
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result X = I/~' (u, =~/2).
The classical antiferromagnetic chain was solved by

Fisher. '7 Naively, one might expect the classical limit
to be good at large s. It will, however, always break
down at sufficiently low temperature. This can be un-
derstood from the perturbative corrections to linear
spin-wave theory. The spin-wave coupling is 0(l/s)
and so the linear (classical) theory is in general a good
approximation. However, this coupling constant is re-

normalized towards large values at large distances or
low energies [exactly as in the O(3) a model] and so
becomes —1 at a temperature5's T-exp[ —n'[s(s
+I)]'~ I. It seems reasonable to expect the spin-
wave velocity of the linear theory, v, =2s, to become
exact at large s since the effects which renormalize the
coupling can be described by a relativistic theory (in
which the speed of "light" is not renormalized be-
cause of Lorentz invariance). The classical susceptibil-
ity is'~

s(s+1) 1 —coth[s(s+1)/T]+ T/s(s+1) 1

3T I+coth[s(s+ I)/T] —T/s(s+1) T-o 6 '

combining the classical susceptibility with the linear
spin-wave velocity gives Xu, = s/3. Remarkably, this
differs from the exact quantum result by only a factor
of m/3 =1.05. Thus, for large spin, we expect X(T)
to be given approximately by the classical result [Eq.
(18)] down to some very small temperature at which a
small ( —5%) but rapid crossover to quantum
behavior occurs. Note that if the higher-spin systems
remained in the free-boson universality class an enor-
mous jump in X (to essentially zero) would have to oc-
cur at low T.

We now turn to experimental data. CuC12 ~ 2NC5H5
is a nearly isotropic, one-dimensional, spin--, antifer-
romagnet [with a coupling J multiplying the Hamil-
tonian of Eq. (1) of 26.8 K] down to about 2 K where
three-dimensional effects take over. The spin-wave
spectrum'9 agrees well with the theoretical predictionzo
E(q) =(~/2) J~sinq~ and gives ~, =n J/2 The . sus-
ceptibility2' (Fig. 1) is in excellent agreement, over a
large range of T, with the result from exact diagonali-
zation of a finite chain. ' Hence extrapolation to T=0
gives good agreement with the exact theoretical value,

Xv, = I/2n . (CH3) qNMnC13 is a nearly isotropic
[5=0.99 in Eq. (1)] one-dimensional spin--', antifer-
romagnet (with J=13.2 K) down to about 1 K. The
spin-wave spectrumz2 is again linear near 0, giving
v, 70.7 K. Parallel and perpendicular susceptibili-
ties23 are shown in Fig. 2. They can be well fitted over
a large temperature range by the classical theory with
J=13.2 K and 5=0.99. [Classically, z3 a large devia-
tion between X~~ and Xi occurs for T» s(s+1)Jab,
with X~~ and Xi, respectively, —', and —,

' times the iso-
tropic value at T, 5 0.] Using this value of Jwe find
that v, is only 7% larger than the linear spin-wave pre-
diction of 2sJ. Large deviations from the classical
theory are seen below 20 K, suggesting the onset of
quantum effects. The predicted value of X(0) for the
isotropic case, s/mt, =0.017 cm3/mol, is also shown
in Fig. 2. We expect X~~ (at T=O) to increase
smoothly with anisotropy as (1 —b, )' 2, as in the s = —,

'

case discussed above. Thus agreement between theory
and experiment is good. On the other hand, assuming
the free boson (k = 1) critical theory leads to
X= I/2nv, =0.0034 cm3/mol. (This is not shown in
Fig. 2 because it is off scale. ) This value is probably
ruled out unless one can argue that the true one-
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FIG. 1. Susceptibility of CuClq 2NC5H5 from Ref. 21.
The solid line is the result from exact diagonalization of a
finite chain (Ref. 16). It agrees with the exact theoretical
prediction at T=0.

FIG. 2. Susceptibility of (CH3)4NMnC13 from Ref. 23.
The theoretical prediction for X at T=o and vanishing an-
isotropy (X=0.017 cm'/mol) is marked.
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dimensional X drops dramatically to this value at
T & 1' and this is wiped out by three-dimensional ef-
fects. The close agreement between quantum and
classical theories, noted above, makes it difficult to
judge whether the attainable temperature (about 1 K)
is in the quantum regime. It may be possible to
resolve this issue by a more complete comparison of
theory and experiment.
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