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%e define a hopping Hamiltonian for independent electrons on a two-dimensional quasiperiodic
Penrose lattice. This problem is then investigated numerically, up to systems of 3126 sites, and for
various boundary conditions. We find the following results for the density of states: (l) There is a
central peak of zero width at zero energy, consisting of about 10% of the total number of states.
(2) These states are strictly localized; we calculate the wave functions explicitly. (3) The remainder
of the states lie in t~o bands, symmetric about zero energy, separated from the localized states by a
finite gap Eo.

PACS numbers: 71.20.+c, 71.25.Mg, 71.50.+t

There is much current interest in quasiperiodic
structures. These systems are intermediate between
the completely periodic perfect crystals and the ran-
dom or disordered amorphous solids. Undoubtedly, a
major push for understanding was given by the experi-
ments of Shechtman er al. ,

' which seem to show
strong evidence for a quasicrystal in the material
Alii ii6Mno i4. The theoretical understanding of these
structures is based on the nonperiodic tiling of the
two-dimensional plane first introduced by Penrose,
and described in the beautiful article by Gardner. 4 The
papers of de Bruijn are probably the most complete in-
vestigation in print. 5 6 The first suggestion that a Pen-
rose tiling might serve as a model for a physical system
was made by Mackay. ~ s

At the same time, the one-dimensional version of
these quasiperiodic structures —the Fibonacci lattices—has been treated theoretically by Kohmoto and
Banavar9 and others. ta ' These investigations are
very thorough, and serve as a model of what one
would like to do in more dimensions; this paper is only
a beginning. Recently Merlin et al. '5 have succeeded
in growing a quasiperiodic superlattice and have car-
ried out x-ray and Raman measurements on it.

We are aware of two other papers on the electronic
states of a Penrose lattice. The first is a paper by
Odagaki and Nguyen'6 and the second is a recent letter
by Choy, '7 both published after this work was complet-
ed. The ntlmerical results both of Odagaki and
Nguyen and of Choy are consistent with ours, within
the numerical uncertainty of the data. However, the
accuracy of our calculation is much greater, so that the
significant structure we find —a zero-width central
peark separated by finite gaps —appears in Choy's data
simply as a relatively broad central peak. And we
disagree in interpretation with both of the other stud-
ies, as emphasized later in this paper. As we show, the
central peak is due to a zero-width band of localized
states; it is not a Van Hove singularity.

The Penrose tiles are two-dimensional shapes which
tile the plane completely, yet force the resulting pat-
tern to be nonperiodic. The patterns are neither regu-

lar nor random. Our Penrose lattice consists of the
vertices of the tiles, or sites, and the edges of the tiles,
or bonds. There are two canonical realizations of the
tiles: either a pair of shapes called kite and dart, or a
pair of fat and thin rhombuses. A transformation con-
nects the two representations. In this investigation, we
employ the rhombus pair, since then the edges, and
hence the bonds, are all of the same length, which we
take to be unity. Further, there is a constraint on
which edges may be adjacent, so that, for instance, we
are not allowed to tile the plane with a periodic pattern
of thick rhombuses alone.

We now define a tight-binding Hamiltonian on this
Penrose lattice. It is then reasonable to take the hop-
ping matrix element to be the same for all pairs of sites
connected by a bond, and zero otherwise. The hop-
ping matrix element can be set equal to unity. This al-
lows us to concentrate on the effects of the lattice to-
pology alone, without the further complication of vari-
able hopping matrix elements. A portion of a typical
such Penrose lattice is shown in Fig. I.

The corresponding time-independent Schrodinger
equation for the energy eigenfunction 'It(x,y) with en-
ergy E is then

E+(xy) = X„„O( xy') =HO,

where the summation is over all sites (x',y') which are
connected to site (x,y) by a bond. We ignore electron
spin.

We would like to be able to make statements about
the spectrum and eigenfunctions of the Hamiltonian
for the single infinite Penrose lattice. However, we
cannot solve this problem exactly, and so we are
forced to try and extrapolate the properties of the in-
finite lattice from a succession of larger and larger fin-
ite systems. This necessarily introduces boundary ef-
fects, whose influence we hope to minimize by a judi-
cious extrapolation scheme.

One important feature of the spectrum can easily be
shown. Since the lattice sites occur at the four corners
of the rhombus-shaped tiles, the lattice can be divided
into two sublattices, say 4 and 8, such that the elec-
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FIG. 1. A section of a Penrose lattice. The center of the
pattern is the center of the figure, and the ten tiles at the
center are the seed from which the pattern was grown.

tron only hops from an A site to a B site, or back. We
then say that the lattice is bipartite. By changing the
sign of the wave function on the B sublattice —obvi-
ously a unitary transformation —we change all the
hopping-matrix elements from 1 to —1, and thus
change the sign of the Hamiltonian H. Thus H and
—H have the same spectrum, and the spectrum of our
original model is invariant if we reflect the energy E
about the origin. Further, by an ordering of the basis
states so that first the electron is on A sites, then on B
sites, the Hamiltonian reduces to an N/2& N/2 block
form, where Nis the number of sites. The two diago-
nal blocks are zero, so that we need only diagonalize a
matrix of half the size of the Hamiltonian.

Since the seed placed at the origin is invariant under
the dihedral group Ds about the origin, and since the
inflation transformation commutes with D5, our series
of lattices have the full D& symmetry, as does the
Hamiltonian of the electron system.

The dihedral group Ds includes the group of rota-
tions by 2m/5, so that we may classify the states by
their behavior under such a rotation. If r is the eigen-
value of a rotation R by an angle 27r/5 counterclock-
wise about the origin then, since rs = 1, r is a fifth root
of unity or r =exp(2n'in/5), where n is an integer
equal to —2, —1, 0, 1, or 2. This quantum number
serves to label the states. The spectrum is invariant if
we replace n by —n.

Further, for the rotationally invariant state with
n =0, we can in addition classify the states as either
even or odd under reflection about one of the dihedral
planes. The wave function for n =0, odd, vanishes on
all the dihedral planes. On the other hand, all wave
functions vanish at the origin except n =0, even. In
this study, we restrict ourselves to the n =0 sector
with the wave function either even or odd; this allows

E

FIG. 2. The integrated density of states, normalized to
Unity, as a function of energy. This is for the lattice inflated
five times, with 1211 lattice sites. The quantities No//lV, Eo,
and E~ are shown here.

much simplification and economy in the calculations.
However, it is possible to take a 2m/5 wedge and apply
a boundary condition equivalent to n = —', . This we do
for it provides a bound on the na0 sectors.

In Fig. 2, we show the integrated density of states,
normalized to the total number of states, for the lattice
inflated five times. These figures are for the series of
lattices seeded by one of the two symmetrical seeds;
the series seeded by the other would look identical, at
the resolution of this figure, as would inflation six
times, or the sectors with n&0.

We note the following features of the integrated
density of states: (1) There is a prominent central step
at zero energy with a size becoming independent of the
lattice size, corresponding to a nonzero degeneracy
proportional to the crystal size in the thermodynamic
limit. We denote the step height by the ratio No/N,
with No the number of zero-energy states, and N the
total number of states. (Remember, we are working
only in the n =0 sector; however, in the thermo-
dynamic limit, the ratio for the total states becomes
the same. ) These zero-energy states will be explained
at length in the next section. (2) There is a sharp cut-
off at a maximum and minimum energy + Ei, this re-
flect a certain most probable coordination number as
explained in the next paragraph. (3) There is a gap in
the density of states of width 2EO, centered on the
central peak. (4) There may be further gaps or struc-
ture in the spectrum, particularly near + Ei, but the
numerical calculations are not able to eliminate the
possibility that these might be simply finite-size ef-
fects. These conclusions, of course, would not neces-
sarily hold, however, if we were to have non-uniform
hopping matrix elements.

We may estimate and understand the maximum en-
ergy as follows. The variational principle easily sup-
plies us with a lower bound for Ei. For instance, if we
take as a trial wave function one which is uniform,
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then we obtain Ei ~ (z), where (z) is the average
coordinate number, equal to four since our lattice has
N sites and 2N bonds. Better yet, the wave function
for each of our finite lattices can serve as a trial func-
tion for the infinite lattice, so that our sequence of nu-
merical calculations on larger and larger finite lattices
increases monotonically to the infinite value Ei

From finite-sized scaling, we estimate these various
parameters of the spectrum to be

No/N =0.09 + 0.01, Eo = 0.163 + 0.007,

Ei = 4.236 + 0.002.

These are the values estimated for the infinite lattice,
including all sectors. In addition, for a large but finite
lattice, inflated s times, we find the results for Ei well
fitted by the formula

Ei=f' f "' "—+. . . , f=(VS+I)/2.
Other structure in the integrated density of states

might be finite-size effects, so that the curve may be-
come smooth as the lattice becomes larger.

We now concentrate our attention on the highly de-
generate zero-energy eigenstates. We will show that
this is a strict degeneracy, proportional to the total
number of states, and thus to the size of the lattice.
Further, we claim that these electronic states are strict-
ly localized in that the wave function is zero outside of
a finite region, and their existence and location depend
only upon the local lattice topology.

As we increase the lattice size, the first occurrence
of a zero-energy eigenstate is after the first inflation.
We show these lattices in Figs. 3(a) and 3(b). We
claim that the zero-energy eigenstate is nonzero only
on the ring of ten sites about the origin, shown by the
dark circles in each of the figures. On these ten sites,
the wave function has a constant amplitude, but alter-
nates signs, as we go around the ring. Then the wave
function cancels in pairs on neighboring sites, and thus
obeys the Schrodinger equation.

To be more specific, we ~erify that this wave func-
tion is an eigenstate as follows: If we number the sites
clockwise around the ring by the integer n, then the
wave function can be taken to be ( —1)". An electron
on a dark ring site n can hop off the ring to a nearby
site not on the ring. From there it can hop back to ex-
actly one other ring site, which is at either n+ 1 or
n —1. However, the wave function on this neighbor-
ing ring site is exactly out of phase with the wave func-
tion on the original ring site. Hence, in the discrete
Schrodinger equation we have a cancellation, and thus
the wave function is an eigenfunction with zero ener-
gy.

As we enlarge the lattice size, this particular confi-
guration remains unchanged with its own unique local
topology, and thus it remains an eigenstate for all
larger lattices. Since the wave function is nonzero only

FIG. 3. (a), (b) The first occurrence of a localized state in
the two symmetrical lattices. The seeds have been inflated
once. The localized states vanish every~here except on the
ten sites sho~n by heavy circles. These states persist in the
infinite lattice, at all regions saith the same local structure.

within a region of radius R, we take this to be the ra-
dius of the localized state.

It is a theorem for Penrose lattices, quoted in the ar-
ticle of Gardner and originally due to Conway, that if
we start at a point in the Penrose lattice with a local
configuration of diameter D, then we can always find
the identical configuration within a distance 2D, and
usually we need only go to a distance D. This theorem
insures that in the infinite Penrose lattice, our local-
ized or bound states are distributed with a finite,
nonzero density inversely proportional to their area, or
proportional to 1/R2. (The proportionality constant
does depend upon the particular configuration. ) Fur-
ther, since most bound states will not include the ori-
gin, they will show up with equal strength in each of
the n sectors, not just the n = 0 sector we have numer-
ically investigated.

Finally, it can be shown that when we inflate a con-
figuration supporting a bound state, we obtain an in-
flated configuration, also supporting a bound state,
with a radius equal to the golden mean f times the ori-
ginal radius R. Thus the bound states occur in families
with radii R„=QRtt. We now estimate the proportion
of localized to total states as follows. Let us assume
that the theorem quoted gives an estimate of the den-
sity of a given configuration to be of the order

[2x (area of configuration) ] ' = I/2m R .

Then for a family of bound states we have

No/N = X„(area per site)/27rR„.

The area per site is simply the average area per tile,
and since fat and thin rhombuses are in the ratio of the
golden mean, this is easily calculated to be 0.8124.
This gives us, for our estimate,

No/N = (0.8124/2~Roz ) X„f"
= (0.8124/27r R 2 )f / (f —1) .

Taking Ro = f, we obtain the crude estimate
No/N = 0.08.
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We make the following further remarks about the

bound states: (1) As radius of the localized state be-

comes large, the states become one dimensional in the
limit of infinite radius. In fact, we can grow configura-

tions which support one-dimensional states by starting

with another seed —the so-called king. This is the til-

ing shown on the cover of Scientific American, and

Gardner calls the configurations supporting these
one-dimensional states "worms. " These one-
dimensional states have the Fibonacci structure, and

are thus treated by the method of Kohmoto and Bana-

var. 9 (2) The peak in the density of states due to these
localized states is a strict delta function. It is evidently

this peak which was mistakenly identified tentatively

as a Van Hove singularity in the papers of Odagaki and

Nguyen and of Choy. (3) The existence of these local-

ized states is not directly a consequence of the quasi-

periodicity of the lattice. They also occur in certain
examples of periodic lattices, 's amorphous solids, ts

and quantum percolation. 20 2' (4) The finite-size
behavior for the quantity NJW is complicated by the

competing threshold and boundary effects. (5) Quali-

tatively, the gap Eo in the spectrum is due to the de-

pletion of states into the central peak.
We add that since the paper was submitted, we have

been able to make an exact calculation of the fraction
of localized states in the thermodynamic limit, and
find that Np/%=13 —8f=0.0557. . . . Also, we have
added an on-site potential proportional to the coordi-
nation number, and find that the localized states per-

sist. Further, this model allows us to identify some
additional structure in the spectrum. z2
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