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High-Dimension Chaotic Attractors of a Nonlinear Ring Cavity
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The route to chaos found from the delay-differential rate equations is basically different from the
subharmonic cascade which is generic of the adiabatic-following-approximation equation. The
Lyapunov dimension of each chaotic attractor is found to increase linearly with ye~, the ratio of the
delay time to the medium lifetime. This clearly shows the invalidity of the difference-equation map-

ping whose dimension never exceeds 2.

PAt:S numbers: 05.45.+ b, 42.65.—k

In a well-known paper, Ikeda' predicted that a
plane-wave light beam transmitted by a ring cavity
containing resonant two-level atoms can exhibit a
subharmonic cascade terminating on a nice spirallike
strange attractor with a low fractal dimension. Numer-
ical studies' of the Ikeda model displayed period-
doubling sequences which were found to be consistent
with the conjecture of universality. 3 Such a bifurcation
sequence follows from a two-dimensional (2D) differ-
ence equation, which is an approximation of the ring-
cavity delay-differential rate equation. The periodic
output intensities consist of trains of square pulses
with fundamental period equal to twice the round-trip
time 7&. No transient oscillation between time inter-
vals v z is taken into account, according to the
adiabatic-following approximation4 required for the
Ikeda model to be valid. %e show that the adiabatic
approximation leads to erroneous conclusions about
the route to chaos and the dimension of the attractors.

The domain of validity of the adiabatic-following
approximation can be easily checked in standard
nonlinear-optics experiments that have a single pass of
the light through the nonlinear medium because all in-
itial data are known. It becomes much more difficult
for multiple-pass experiments because transients in-
teract repeatedly with the atoms and spread out over
the full interval ~q. If any transient interaction lasts
an atomic relaxation time T& = y ', then the number
of degrees of freedom is roughly equal to the number
y7 & of cavity modes which might be excited within the
linewidth y and thus increases linearly with 7&. Such
a description disagrees with the usual feeling that the
Ikeda mapping (with two degrees of freedom) works in

the limit yf & )& l. Indeed we find that the route to
chaos is very different from the subharmonic one'
and the fundamental oscillation is not a square-wave
form.

The delay-differential equation is an infinite-
dimensional dynamic system; such systems often exhi-
bit finite-dimension attractors. Farmer sho~s that the
attractors of the Mackey-01ass delay-differential equa-
tion have finite dimensions that increase linearly with

beyond the periodic windows. A similar linear

growth with space dimension was also found in a par-
tial differential equation. Nonetheless, no generic
route to chaos in delay-differential systems is known.
Might the 2rtt period-doubling sequence be generic as
predicted in the 20 model~ Might the higher-
harmonic frequency locking, as observed' and numeri-
cally found in a hybrid device, be generic? Is the
linear increase of the attractor dimension with TR a
general property of delay-differential systems? To ad-
dress these questions, we have (a) numerically in-
tegrated the plane-wave ring-cavity delay-differential
rate equation in the limit y7R )& 1 and studied the bi-
furcation sequence as a function of the input intensity
and compared it to the 2D mapping predictions"
(Figs. 1 and 2); and (b) studied the attractors for a
given input intensity when y7„is varied (Fig. 3).

The ring-cavity delay-differential rate equations are

Z(t) = Z, +Re(t .,)-
x exp [ix [$(t —r& ) —1]}

and, with P(0) =0,

j =dy(t)idt = —y[p(t)+& (p) IE(t) I'l.

E(t), the complex field amplitude at the entrance to
the cell containing two-level atoms, is scaled to the
square root of the atomic saturation intensity. Equa-
tion (1) gives the boundary condition: E (t ) at time t is
the sum of the intracavity input amplitude Eo and the
cell-exit field amplitude at time t —7 R after it has been
reflected by the output and input mirrors with intensi-
ty reflectivity R ( 1 and the feedback mirrors with re-
flectivity 1; T= 1 —R. The phase factor @(t) mea-
sures the amount of energy absorbed by the cell, and
X=o./ is the linear susceptibility, where n ' and l are
the off-resonance absorption length and the cell
length, respectively, and 5=2m T2(v, , —vf) is the de-
tuning between the atomic and light-beam frequen-
cies, scaled to the homogeneous halfwidth (2m T2)
In the limit @= 0, the 2D mapping equation is
recovered. Here we keep the exact expression for
w (@),

3 (g) = [exp[o/(@ —1)}—I ]/nl, (3)
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because the "dispersive limit" generally assumed by
previous workers' is not always valid.

Figure 1 displays numerically computed time depen-
dences and phase-space attractors (after the transient
regime) for 8, nl, and b, values used previously by
Ikeda" and Carmichael. The Runge-Kutta algorithm
was used, and At/T, was varied from 0.05 to 0.005;
for At/Tt & 0.01, no change in the spectra or attrac-
tors was found for all Eo considered. From the fixed
point for Eo & 1.03, the system bifurcates on a limit
cycle with period 2.37' stable for EQ up to 1.07. No
period doubling (or frequency locking) was found,
although we carefully looked for it using increments of
10 3 for Eo from 1.065 to 1.08, i.e. , increments about
8 times smaller than the expected domain for the
period-doubled wave form. The high-frequency varia-
tions in Figs. 1(a)—1(c) may be responsible for chaos
and termination of the period-doubling sequence. For
higher Eo, a quasiperiodic window with two periods of
order 27R and 3rit appears. Note that in the limit of
very high Eo, the system terminates on a fixed point

(0) E, =I.O5

I I I I I I ) I I I I I l l

I 5.

2—
(a)
Ep=1.027

P2

2—

n2-

0'

) l i

l l 1 l l

(b)
E,=1.047

P4

(c)
Ep=1.058

CHAOS

(d)
E,=1.065

P8

with E(t) —Eo and P(r) —1. This bifurcation se-
quence can be compared with that of the 2D limit
displayed in Fig. 2. The fundamental limit cycle oc-
curs at the same Fo and the E0=1.26 wave forms are
quite similar, but period doubling to chaos occurs only
for the 2D map. The adiabatic-following approxima-
tion, @=0, clearly breaks down, even when the actual
limit cycle has a period close to 2vz and the actual
chaotic attractor has a spiral shape: Compare Fig. 1(e)
with Fig. 3(d).

1.0-
0

(b) E, =I.I0
2.0

I.Q-

(c) E, =I.Ze

I.O-

(d) Eo= I, 50

2.0 "

{e) E, = l.70
IQ—

-02—
0.8

OA—

Q3 'di

0.8

I

oI&

0,8

CU

LLJ
p

3—

0'

l l I

(a)
Ep=1.26

p3

(f)
Fo=1 3
CHAOS

(g)
Ep=1.7

CHAOS

'to s'o

Time/rR

FIG. 1. Numerical integration of Eqs. (1), (2), and (3)
with R = 0.95, o l = 4, 5 = 3m, and y7-q = 10. No period-
doubled wave form was found between (a) and (b) for 10
steps in Fo between 1.065 and 1.08.
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FIG. 2. Bifurcation sequence for the 2D mapping ~ith

same parameters as Fig. 1. A period-doubling route to chaos
occurs between (b) and (c). Periodic windows with the
chaotic domain also occur; see (d) and (e).
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IQ—
TABLE I. Number of positive Lyapunov exponents Ã+,

the Lyapunov dimension DI, the metric entropy h, and oth-
er parameters as in I.ig. 1.
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FIG. 3. Chaotic attractors

E0=1.7 and other parameters
yrR ——1, (b) yrR = 2, and (c)
2D mapping approximation.

as a function of yTR for
the same as in Fig. l. (a)
y~R=5, (d) "y7R=~" Or

It has been noted that the 27R oscillation and the
period-doubling cascade are promoted when the initial
(low Eo) phase Anl j2 is an odd multiple of m. This is
verified for the ring-cavity dynamical system: The
choice of an odd multiple, if large enough, gives rise
to a period doubling. ' Nevertheless, the subharmonic
cascade is thwarted and finally interrupted by harmon-
1cs.

Numerical integration of Eqs. (1) and (2) with

exp(niP) = 1 shows that the dispersive-limit bifurca-
tion sequence is quite different. Period doubling is ob-
tained without the requirement b, nl/2= (2k+1)7r,
and no periodic ~indow is seen. Thus the nonlinear
absorption is generally nor negligible even for input in-

tensities small compared with o. /. Approximations
valid for a single pass break down, a priori, for multiple
passes.

In summary, our numerical studies show that a
subharmonic sequence is not generic for a ring-cavity
system. Another manifestation of the breakdown of
the adiabatic-following approximation is the high
dimensionality of the attractors.

The ergodic theory" of chaos provides quantities
such as the Lyapunov exponents, the entropy, and the
Hausdorff dimension to characterize the chaotic attrac-
tors. The positive (negative) exponents measure aver-
age exponential divergence (convergence) of nearby
trajectories, onto the phase-space attractor. The metric
entropy, h, is defined as the sum of the positive
Lyapunov exponents A,+. It measures the rate of new
information created by the dynamical system.

Here, the dimension Dz of an attractor is calculated
by use of the conjecture of Kaplan and Yorke, which
relates the dimension to the Lyapunov exponents set

in decreasing order:

DL =J'+ I&, +i~I

where j is the largest integer for which A t +. . . + A.
«0. The conjecture that the Lyapunov dimension Dz
is equal to the information dimension has been veri-
fied by Farmer' for the delay-differential Mackey-

Glass equation. The Lyapunov exponents are calculat-
ed numerically from Farmer's technique. Table I

gives the number, W+, of positive Lyapunov ex-
ponents and both h and Dz. For yes & 2, the chaotic
attractors look the same (see Fig. 3). Remarkable
features appear in Table I. Both N+ and Dz increase
almost linearly with 7.z whereas the metric entropy is
approximately constant. The linear increase of N+
and Dz vs y7q invalidates the adiabatic-following ap-
proximation for yv. R

—~. Indeed the dimension ac-
tually goes to infinity as yrR does, whereas the dimen-
sion the of the Ikeda-mapping attractor can never
exceed 2. Farmer's findings on the Mackey-Glass
equation and the results here for the nonlinear ring
cavity with nonlinear absorption suggest that a linear
increase in dimension with increasing yvR may be a
universal feature of delay-differential nonlinear sys-
tems. The high dimensionality appears to arise from
inherent fluctuations in the delay-differential equa-
tions as discussed by Pomeau et al. '

In summary, computations including the infinite-
dimensional time variable show that even for large
y'TR, the ring-cavity route to chaos and the attractor's
Lyapunov dimension differ markedly from those of
the difference-equation map. Thus the success of the
map in describing many of the experimental (con-
tinuous-time) observations using a hybrid device
must be considered fortuitous. The route to chaos of
ring-cavity'4 and single-feedback-mirror' systems
(analyzed thus far including the infinite-dimensional
radial variable but neglecting the infinite-dimensional
temporal variable) should be reexamined to determine
the effect (possibly large) of the time derivative.
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