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~e show that the cooperative-ring-exchange phenomenon and the consequent fractional quanti-
zation as suggested by Kivelson et al. can persist in a quantum fluid which is incompressible, like
the Laughlin state. Simple arguments are given to suggest that the very existenct of the cooperative
ring exchange may imply a melting instability of the triangular signer solid towards an incompres-
sible Auid.

PACS numbers: 71.45.6m, 73.40.Lq

It has been realized that the two-dimensional elec-
trons in very strong magnetic fields exhibiting the frac-
tional quantized Hall effect' have very unusual corre-
lations. This is explicit in the Laughlin wave function
and the associated quasiparticle properties. 2 But the
physics behind the correlation and the origin of the
fractional quantization has remained most unclear.
Recently Kivelson, Kallin, Arovas, and Schrieffer3
(KKAS) have argued that a cooperative ring exchange
(CRE) is present in this system and that the fractional
quantization could be explained on this basis. This
fascinating proposal, on the face of it, seems to
demand that the ground state should be a triangular-
lattice Wigner solid. On the other hand, the Laughlin
wave function, which is believed to contain the essen-
tial physics and which is quantitatively and qualitative-
ly~ so successful, describes an incompressible quantum
fluid at the densities of interest. It is not clear if the
real ground state is a liquid or not.

In an attempt to understand the situation, I recently
analyzed the Laughlin wave function and found6 that
the special correlation in it implies a dominant pres-
ence of CRE fluctuations. Motivated by this result
and the compelling physics of KKAS theory I attempt
to show in this paper that the KKAS theory is flexible
and that the long-range spatial order is not a pre-
requisite. The only requirement is that the fluid
should be incompressible and should have a
triangular-lattice short-range correlation. I also give
simple arguments to suggest that the presence of CRE
implies an inherent melting instability of the triangular
Wigner solid towards an incompressible fluid. The
incompressible-liquid-like intermediate configurations
in the path-integral formalism result in an annealed
random- (imaginary-) field discrete Gaussian model.
The random fields have long-range spatial correlation.
The annealed model still exhibits the roughening tran-
sition and the consequent CRE and density quantiza-
tion.

The theory of KKAS involves the evaluation of the
partition function by a path-integral method. Special
types of classical paths which correspond to the
cooperative tunneling of rings of electrons in the
Wigner lattice to permuted configurations are assumed

to dominate the path integral. These "instantons"
have a characteristic size io. All the contributions of
the ring exchanges happening in a time interval 7o are
summed by modeling the change in the action by a
discrete Gaussian model in an imaginary field,

HDo = n(v) X (Si, —S„)'+ih(v ) XS„,

where St, is an integer variable associated to every tri-
angle in the lattice (or associated to the sites of the
dual lattice which is a honeycomb lattice). S„counts
the number of clockwise minus counterclockwise ring
exchanges that surround a plaquette X. The filling
fraction is v —= I/m The function a(v) is a measure
of the tunneling barrier. The function h (v)
=n (v ' —1) is the phase factor which arises as a
result of (i) the magnetic flux enclosed by the ex-
change rings, (ii) the Fermi nature of the electrons,
and (iii) the "complex" tunneling paths. The final
partition function is assumed to be a product of the
partition functions of discrete Gaussian models arising
from every time slice ~o.

First, I give a simple argument to suggest that the
existence of CRE may imply a melting instability of
the Wigner solid. The "thermal average" L—= ((S„—S„)2) is a measure of how much a particular
bond (shared by the nearest-neighbor plaquettes X and
p, ) is involved in the CRE in a time interval 7o This is.
easily evaluated by use of the pair approximation used
by Weeks and Gilmer. For m =3„we are in the
rough phase (CRE phase) and L =0.9. This means
that with very high probability the electrons at the end
of the bond are away from their home sites (and gone
into the complex plane) during the time interval 7o
This is also consistent with the observation made by
Kivelson. It should be mentioned that L is model
dependent and may get reduced if one models the
short-range interaction between the exchange loops
more accurately. However, a significant reduction
seems unlikely because the existence of roughening
may require an appreciable value of L.

Having observed a large value of L in the discrete
Gaussian model, we will go back and see what it
means to the various paths and the action in the path
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integral. If we use the quantity I. as the Lindeman ra-

tio used in the melting of classical solids we are far
into the liquid region. However, this cannot be naive-

ly used here. The particles are not executing almost
independent thermal motions as in a classical solid.
The dynamics of the present problem is governed by a
Hamiltonian with only first-order time derivatives,
which give rise to its own peculiar properties. Motivat-
ed by the large Lindeman ratio, I give an alternative
argument. If we consider a rigid Wigner solid and al-

low one line of atoms to tunnel coherently they see a
potential which is periodic with the periodicity of the
lattice. We saw before that every electron, including
those in the neighborhood of the chain, participates in
the tunneling with probability of the order of unity
even in a short time interval ro Thu. s, if we observe
the coherent motion of one chain over a time long
compared to ro, the potential that it sees will not be
periodic. The physically important rings being one
dimensional and long, this can result in the destruction
of the long-range order along the chain rather easily.
This in turn will feed back and affect the rest of the
neighborhood, resulting possibly in a molten state.
This also will result in the path of the wave packets of
electrons being displaced away from the edges of the
triangle of the lattice. This means that the "self-
consistent potential" seen by an electron no longer has
a component which has long-range order.

If the lattice melts into a compressible liquid, it is
easily seen that all the "free energy"' that is gained as
a result of the large-ring exchanges is lost as a result of
the phase incoherence arising from the long-
wavelength density fluctuations. It can gain back part
of that free energy, in spite of the disorder, by remain-
ing as an incompressible fluid. Thus the phase factor
in the action tries to lock the molten liquid into
incompressible-liquid-like configurations. The two-

body interaction favors triangular-lattice short-range
order in this incompressible liquid.

It may be possible for the Wigner solid to melt even

before the CRE sets in. This is because L becomes
finite for Q. ( n, /2, where n, =1.1. Thus the follow-
ing is also an interesting possibility. As n is decreased,
first the solid melts into a compressible liquid without
CRE. Then it goes into an incompressible liquid hav-
ing CRE.

%e will now attempt to include liquidlike in-
compressible configurations as intermediate configura-
tions in the treatment of KKAS. An incompressible
configuration is defined by the following considera-
tions. Any arbitrary configuration can be triangulated
in a unique way. 9 We consider only those configura-
tions whose mean number of triangles per unit area
and mean area of the triangles ao coincides with that of
a regular triangular lattice at the same density. Such
configurations have well-developed short-range
triangular-lattice order. Consider an arbitrarily large
closed ring r of length —i formed by the edges of the
elementary triangles. Let the number of triangles en-
closed by it be Nz. If the total area enclosed by this
loop deviates from Nqao (the mean area of Wq trian-
gles) by an amount —i' 2 or less, then we define this
to be an incompressible configuration.

As mentioned before, such configurations have
short-range triangular-lattice order and the deviation
from long-range order arises through the occurrence of
topological and nontopological defects in a triangular
lattice. Simple considerations show that the nature of
these defects and their spatial distribution are strongly
constrained by the incompressibility requirement.

Associate an integer variable S„with every elemen-
tary triangle and let ai, be its area. A ring r is formed
by the edges of the triangles. The change in action
due to a single ring-exchange event is

n, (v) n, +2mi@/go+in(n„— 1),

where n, is the length of the ring r and $/@0 is the to-
tal flux quanta enclosed by the ring. Since we have a
random lattice, n depends on the ring r. We can write
Eq. (2) as

od2m ).

The phase factor m (m —1)(1+eqz) is what every tri-

angle A. will contribute to any ring exchange that en-

closes it. As in the case of KKAS theory, az„ is short
ranged and positive. The dual lattice of the triangulat-
ed random network is not a simple honeycomb lattice.
Its coordination, bond length, and bond angles vary as
one moves along the lattice. Let C denote the topolo-

gy or connectivity of a given random dual lattice. The
connectivity C, by definition, uniquely specifies the
coordination number of each vertex in the dual net-
work. One can imagine a range of fluctuations in bond
angles and bond lengths which keep the connectivity
of the lattice the same. That is, consistent with theqi, = (ag —ao)/ao, ~ = 2m/(m —1).

~, (m) n, + im (m —1)W„+2imm X„(ai,—ao)/ao (m

The sum is over all triangles inside the ring r, ao is the
area of the triangle of a periodic triangular lattice of
the same density, and Nq is the number of triangles
inside the ring r. Equation (3) follows from the fact
that, as in the case of a triangular lattice, if the number
of atoms in the ring is even (odd) then the number of
triangles inside the ring is also even (odd) in a random
triangulated lattice.

The action for a general exchange in terms of the
spin variables is modeled as

HDo = X~g„(Sg—5„) + ih (v ) X(1+ev)„)5„, (4)
where
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given connectivity the area of the elementary triangles

a), cRA var/ Over 8 I'RAgC.

We are going to consider paths which are in some
sense "close" to the paths considered by KKAS. We
assume that the melting instability discussed at the be-
ginning of this Letter gives rise to a slow variation in
the connectivity C of the intermediate configurations.
This gives rise to a slow variation in a„. We also ex-
pect a fast variation in the configuration which does
not change the connectivity drastically. The fast varia-
tion is analogous to the Gaussian fluctuation con-
sidered by KKAS around an exchange event.

First I will argue that in spite of the slow fluctuation
in the area of the triangles we can have CRE as a result
of the incompressibility constraint. In a compressible
fluid the total area enclosed by the ring r is

A, = X ag = Ng ao+ xq„ (6)
A, C p

coherence. In an incompressible fluid, however, the
~bs~~ce of long-wavelength density fluctuations
suppresses large area fluctuations.

To study the fast fluctuations in the area, we assume
that they are faster or of the order of the ring-

exchange time scale. Then the partition function in

the time slice ~0 is

Z, [C]= XP[C,&„']Z[C,~„'],
~C

where Z[C, pic] is the partition function for a given
lattice configuration (C, pic) and P[C, q~cj is the prob-
ability that one will land at time t at a network with

connectivity C and area of plaquettes a& = ao(1+pic).
Equation (9) resembles the annealed average of a ran-
dom Gaussian model. The final partition function is

approximately the product of Z,, [C,] over various

time slices i.

The theory of KKAS amounts to assuming that the

property of the product

P[C ~c]Z[C, q~c] (10)

is such that Eq. (9) is dominated by a C and [q~c]
which corresponds to a perfect incompressible triangu-
lar lattice, including a certain amount of Gaussian fluc-
tuations.

What is said in the present paper is that if as a result
of the inherent melting instability Eq. (9) is dominated
by a class of C and [pic] which corresponds to an
incompressible-fluid configuration, the CRE can still
persist under some conditions. In order to consider
the fast fluctuation we pick a typical disordered C and
evaluate the partition function and average over pic.
For convenience we will suppress the index C. First,
let us assume that the q„are independent Gaussian
random variables (this amounts to assuming that the
fiuid is compressible):

= &~ao+ bid&~ + b2&1.

where I, is the perimeter of the ring and the b's are
constants of the order of unity. The first term is N,
times the mean area of a triangle, The second term
arises from the density fluctuation in the bulk which
scales as the square root of the area of the loop. The
last term arises from the boundary of the loop. For an
incompressible fluid the area has the form

A, = W, ao + b3 + b2Jl, (8)

The fluctuation from the bulk is replaced by a constant
b3 which is of the order of unity. The fluctuation for
the incompressible liquid has exactly the same form as
the rounding-off correction of KKAS which only adds
a positive renormalization constant to a. Thus the
phase incoherence arising from the slow variation in
connectivity need not destroy CRE.

We can visualize the above in the following way.
Large exchange ring paths are frozen in the liquid. In
a compressible liquid these paths move adiabatically
with the long-wavelength density fluctuations. This
results in area fluctuation and hence the phase in- where a is a measure of the area fluctuation. The an-

nealing is easily performed to get

ho &) XSg (12)Z„,[C]= Tr exp —Xai,„(S„—S„)'+ih XSi, ——,
' (

The above annealed model has a "mass" term —,
' (o.e)2$S& and hence cannot have a roughening transition. This

means that CRE is absent for any value of the constants n„~. The mass term arises as a result of the incoherence
arising from the density fluctuation in a compressible fluid. Even the introduction of short-range correlation in Eq.
(11) does not remove the mass term.

The above suggests that if we want CRE we should introduce long-range correlation between the random vari-

ables [qi, ]. Since the Laughlin wave function describes an incompressible quantum fluid we can use an analytic

form for correlation suggested by it. A change in area of an elementary triangle amounts to some local density
fluctuation. Such density fluctuations get strong spatial correlation through the plasma correlation in the Laughlin
wave function. This arises from the logarithmic interaction between the charges in the corresponding one-

component plasma. Hence we assume a form

P [ hi, ] —exp —X7)„Ki,„g„,
2718
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where

K» = »IR„—R„I, for large IR„—R„I.
The annealing can be performed with this distribution function to get

Z,,= Trexp —Xn»(S„—S„) +ih XS&+(he)2XK»'S„S„.

(14)

(15)

Notice that the mass term is absent in the present
annealed model only as a result of the logarithmic
correlation in Eq. (13). Thus the effect of fluctuation
in an incompressible fluid is only to renormalize the
constants o» to ~»+~i,~. It is intuitively obvious
that the randomness in o. +a' is not very important as
long as they do not change too often. For the presence
of roughening and hence CRE the important thing is
that one should have small enough n+ a' and the fol-
lowing symmetry in the Hamiltonian,

H[S„+n] = H[S„], (17)

for any integer n.

The annealed Gaussian model can be transformed
into the Coulomb gas by use of the transformation of
Chui and Weeks. 'o In spite of the randomness in
o, + n' the long-distance interaction in the dual model
is of the Coulomb type. The randomness only affects
the short-distance interaction between the charges. It
is the long-distance behavior of the interaction which
decides the presence of the dielectric phase (corre-
sponding to the roughened phase in the discrete
Gaussian model). Thus we have CRE. When we
move away from the commensurate value by adding or
subtracting extra particles, the nonanalytic change in
energy depends only on the long-distance behavior of
the interaction between the charges. Thus the cusp in
the free energy and hence fractional quantization per-
sists for sufficiently small values of a+ n'. Notice that
the incompressibility constraint also limits the
"amount" of the short-time-scale fluctuation, leading
only to a simple renormalization of n Hence the c. on-
figuration average over q done independently in each
time slice does not really favor classical paths with
large actions.

In this paper I have tried to show within the path-
integral formalism of KKAS that incompressible-
liquid-like configurations can sustain CRE under some
conditions. I have also given arguments to suggest
that the very existence of CRE in the present context
implies a melting instability of the solid. This con-
clusion, together with the quantitative success of the
Laughlin wave function and the observation that the
Laughlin wave function contains CRE under some
conditions, may strengthen the argument that CRE is

Since $„K„„'=0 for every h. as a result of the asymp-
totic form of Ki,„,

(16)

the origin of the fractional quantum Hall effect.
It should be mentioned that recently Choquard and

Clerouin" have suggested, on the basis of Monte Car-
lo studies, the cooperative ring motion to be the possi-
ble origin of the melting of the triangular Wigner solid
of the two-dimensional one-component classical plas-
ma. Also, Cross and Fisher'2 have suggested the pos-
sibility of CRE and raised the question of the stability
of a solid in the presence of CRE in quantum solids.
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