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Dynamic Symmetries in Scattering
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%e discuss the conditions that dynamic symmetries impose on the scattering 5 matrices and con-
struct these matrices for problems with SO(2, 1), SO(2, 2), and SO(2, 3) dynamical groups. The last

group appears to be very useful for the analysis of heavy-ion collisions.
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E=F((C) ), (3)

where (C) denotes the expectation value of C in a
representation of G. These formulas are very useful
for comparison with experiments. Notable examples
here are Gell-Mann-Ne'eman SU(3), which leads to
the Gell-Mann-Okubo mass formula' and to the
SU (6) generalization of Gursey and Radicati in
elementary-particle physics; the dynamic symmetries
of the interacting-boson model, 3 U(5), SU(3), and
SO(6), in nuclear physics; the symmetry of the
Coulomb potential, 4 SO(4), and its generalization to

Dynamical groups and spectrutn-generating algebras
have been used extensively in the description of
bound states in a variety of problems in physics. The
basic idea here is that the Hamiltonian (or mass opera-
tor) H belongs to the enveloping algebra of some
group G, typically of the form

H = Eo+ XepGp+ 2 XtrpqGpG
P Py

where the Gp's are generators of G, and Eo, ep, and

u» are parameters which characterize the system
under study. Dynamic symmetries occur whenever H
can be written in terms only of Casimir invariants, C,
of G (or of a string GD G'a G"s. . . of subgroups of
G),

H=F(C).
Under these conditions, the eigenvalues of H can be
obtained in closed form and provide energy or mass
formulas of the type

two-electron atomss in atomic physics; and the sym-
metries of the vibron model, U(3) and SQ(4), in
molecular physics.

Up to now, it has not been clear what the implica-
tions of dynamic symmetries and groups for scattering
problems are, since the only known example of a
dynamic symmetry in scattering has been that of the
nonrelativistic scattering by a Coulomb potential [with
symmetry group SQ(3, 1)]. We have found a way to
construct 5 matrices starting from a dynamic group G.
Application of this technique to several cases appears
to indicate that the presence of a dynamic symmetry
implies a particular functional form of the S matrix
(and thus of the cross section), in the same way as the
presence of a dynamic symmetry in bound-state prob-
lems implies a particular functional form of the eigen-
value spectrum. For example, we find that all prob-
lems with SO(3, 1) symmetry imply S matrices which,
for partial wave I and momentum k, have the form
[SO(3,1)1

~ ( )
I (I + 1+ If(k)),~(„)
r(I+1 —tf(k) )

The real function f(k) is determined by the explicit
expression of the Hamiltonian H in terms of Casimir
invariants of G, while the phase $ (k) is determined
by the associated asymptotic conditions. For example,
in the CoUlomb problem, ~e have

H = o'Z'Z jp, c'/2(C 1)—
where C is the scalar quadratic invariant of SO(3, 1)
given in terms of the Lenz vector, tkA/m, and the an-
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SO(2, 1) expanded into E(2) 8 E(1),
SO(2, 2) expanded into E(2) 8 E(2),

SO(2, 3) expanded into E(2) 8 E(3),

(8)

and, in general, SO(2, n) expanded in terms of
E(2) 8 E(n). In all these cases, the group E(2)
describes the strength of the interaction, while the
group E(n) describes the free waves in the n-

dimensional space. Although not strictly necessary,
we have also included explicitly in Eq. (8), in the
one-dimensional case, the group E(l), in order to em-
phasize the general structure of the problem. Since the
eigenstates of the Euclidean group E(n) describe the
asymptotic incoming and outgoing free waves, the 5
matrix can be found from the expansion coefficients
of SO(2, n) into E(2) 8 E(n). Details of these expan-
sions are contained in the thesis of one of us9 and will

be presented in a longer publication. Here we quote
the results for the three-dimensional case, SO(2, 3).

The eigenstates of SO(2,3) of interest in scattering

gular momentum vector, L, by C = A2 —L2. Equation
(5) and the asymptotic conditions on the Coulomb
waves determine

f(k) =nZiZ~c/ti k, @(k)=0.
Here and in Eq. (5), o. is the fine-structure constant, p.
the reduced mass of the colliding particles, Zi, Z2 their
charges, and it k their center-of-mass momentum.

The result stated above is important because it al-

lows one to construct, in closed form, classes of solv-
able 5 matrices which can be used to analyze experi-
mental data. However, there still remains the problem
of how to go from a group G to the S matrix. By gain-
ing experience from the simpler case'8 SU(1,1)
=SO(2, 1), we have constructed, using purely alge-
braic methods, with no reference to the SchriMinger
equation, S matrices for a class of problems of practical
interest. These are of the type

SO(2, I ) = SU(1, 1) for ID,

SO(2, 2) = SU(1, 1) 8 SU(l, 1) for 2D,

$0(2, 3) for 3D,

and, in general, SO(2, n) for problems in n space
dimensions. The technique used is that of expansion
of the eigenstates of SQ(2, n), which describe the
scattering states in the presence of interactions, in
terms of those of the corresponding Euclidean group,
as in Ref. 8:

problems are labeled by the quantum numbers
Icu, l, m, u), where

C2I ~, l, m u) = ~(~+ 3) l~, i, mu),

L Irv, l, m, u) = l(i+1) Ice, l, m, u),

L3Icu, l, m, u) = mice, l, m, u),

&3 I~, l m, u) = u l~, i m, u) .

(9)

In Eq. (9), l and m denote the three-dimensional angu-

lar momentum and its z projection, u the strength of
the interaction, and co(a&+3) the eigenvalues of the
scalar quadratic Casimir invariant, C2, of SQ (2,3).

We note that, since we want to describe scattering
states, we use in (9) the continuous unitary representa

tions of SO(2,3), for which

co= ——', + if(k), (10)

where f(k) is a real function of the center-of-mass
momentum k. For such representations, the eigen-
value of the Casimir operator C2 is —', f (k),—so that

f(k) is determined by the relation of the Hamiltonian
to the Casimir invariant. Equation (10) is analogous
to the relation j= ——,

' + if(k) for SO(2, 1) discussed

in Ref. 8.
The eigenstates of E(2) 8 E(3) can be written as

I
+ k, l, m, u), where

P2I + k, l, m, u) = kzl + k, l, m, u),

L'I + k, i, m, u) = l(i+I) I
+ k, l, m u),

L3I +k, l, m, u) =ml +k, l, m, u),
I 3I +klm, u) =ul +klm, u).

In Eq. (11), k~ denotes the eigenvalue of the Casimir
invariant, P2, of E(3), i.e., the square of the momen-
tum, while l, m, and u have the same meaning as be-
fore. [P, L, and L3 are operators of E(3), while V3

belongs to E(2).] Furthermore, —k and + k denote,
respectively, the incoming- and outgoing-wave
representations of the Euclidean group.

Expanding the asymptotic eigenstates, Eq. (9), in
terms of Eq. (11),

l~, l, m, u)

=~t.(k) I

—k, l, m, u)+&t. (k)I+k, l, m, u&, (12)

and using the same algebraic technique discussed in
Ref. 8, we find an 5 matrix

[S,(k) = (- ) t+'a, „(k)/~,„(k)]
j of the form

I ( —,
' [l+u+ —+if(k)])I ( —,

' [i—u+ —', +if(k)])
S,(k) = ~Is(k)

I ( —,
' [l+ + —', —if(k)])I ( —,

' [i— + —', —if(&)])
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where f(k) and 5 (E) are arbitrary real functions of k
to be determined by the relationship between H and C
and by the asymptotic conditions. If one requires that

S, approaches the Coulomb S matrix as i ~, for any
given k, then one must take in Eq. (13)

f(k) =aZ, Z~c/tk, b, (k) =2ln2 f(k).
Pure Coulomb scattering can be obtained exactly from
Eqs. (13) and (14) for any I and k by choosing u = —,

' in

(13), as one can see by using the relation

inelastic scattering, transfer reactions, and relativistic
problems. Work in this direction is in progress.

In conclusion, it appears that spectrum-generating
algebras and dynamic groups may also be of practical
use in the analysis of scattering data.

This work was supported in part by the U. S. Depart-
ment of Energy under Contract No. DE-AC02-
76ER03074. One of us (Y.A.) is an Alfred P. Sloan
Fellow.

I (z)l (z+ —,
' ) =2' 2'7rt~2r(2z). (IS)

Cases with v& —, describe situations with a modified
Coulomb interaction.

Smatrices of the form (14) are thus very well suited
to analysis of situations in which the underlying physi-
cal problem is that of a modified Coulomb interaction,
as, for example, is the case in the scattering of two
heavy ions. Here the interaction at large distances is
the Coulomb interaction, while at short distances this
interaction is modified by the nuclear contribution.
Analysis of heavy-ion-reaction data directly in terms
of S matrices will avoid the introduction of optical po-
tentials, which may or may not exist, and which, in
general, are nonlocal and energy dependent. In other
words, the S matrix (14) may play the role here of the
dual amplitude' used to analyze scattering data in
elementary-particle physics in the early 1970's. Pre-
liminary calculations appear to indicate that the S ma-
trices (14) describe the data well. Results will be
presented elsewhere. " We note here that, for u real,
SI(k) satisfies all appropriate criteria for S matrices.
For example, it is manifestly unitary. If one takes u

complex, the unitary bound is satisfied if Imv2 ( 0.
This case describes scattering problems with absorp-
tion. Our approach can also be generalized to describe

~»Present address: Physics Department, Duke Universi-
ty, Durham, N.C. 27706.
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