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A new lattice model of polymer crystallization is described. Results of numerical solutions of rate
equations for crystallization of a two-dimensional ‘‘crystal’’ are presented. It is shown that the
crystal thickness varies inversely with supercooling and that kinetics similar to secondary nucleation
occurs. This is true even though the growth face is intrinsically rough and hence there cannot be
any nucleation. The presence of a low-entropy saddle point during growth is explained, and its in-
fluence on the crystal thickness and lamellar morphology is discussed.

PACS numbers: 61.50.Cj, 61.41.+¢, 82.60.Nh

Crystals of long-chain molecules invariably grow as
lamellae that are usually much thinner than the length
of the chains."? Molecules traverse the lamellae many
times; the geometry is described in detail below. The
precise manner of this folding has been the subject of
considerable debate, but the emphasis of this paper is
instead the origin of the lamellar habit. This phe-
nomenon has been explained by models that invoke
secondary nucleation; i.e., the nucleation of new layers
of the crystal on the advancing edge of the lamella.’-3
The kinetics is also consistent with this mechanism,*’
yet the crystals do not always have the faceted edges
required for the nucleation process.>® In those cases
where crystals of a polymer can be grown with either
straight or smoothly rounded morphologies, the latter
tend to occur at higher temperatures. It has been pro-
posed that this change is associated with surface
roughening.>!® At the higher temperatures the sur-
face is intrinsically rough on a microscopic scale, since
steps across the growth faces and other favorable
growth sites are generated by thermal fluctuations in
equilibrium. Nucleation of a new layer is not required
under these conditions. For growth faces of infinite
extent, the theory of the roughening transition is now
well established,!!~1* and experimental verification has
been obtained.!* We now develop further a model of
polymer crystallization that applies to rough growth
faces and which could also be relevant when the faces
are straight. The model reproduces the principal
trends in experimental measurements of lamellar
thickness and growth rates.

The growth face can only be sufficiently rough if the
stems (the straight sequences of chain which traverse
the crystal) are allowed to vary in length and if short
stems are allowed. Our model considers the basic unit
of crystallization to be a short sequence of chain (e.g.,
six CH, units of polyethylene; cf. Refs. 4 and 9 and
Point!%); stems differ in length according to how many
units they contain.

The geometry of the crystals is described schemati-
cally in Fig. 1(a) with each stem corresponding to a
prism. The ends of the stems should be imagined as
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having attached chains emerging from the crystalline
region. In many cases (e.g., to the left of the diagram)
the chains will be folded back into the lamella. Partly
attached chains with loops are indicated at the growth
surface. Effects of polymer chain connectivity and
coiling in the fluid phase are included by the introduc-
tion of ‘‘pinning points.”” These represent points on
the crystal boundary which are not able to extend, e.g.,
because the emerging chain is trapped elsewhere as
happens during folding. If a three-dimensional (3D)
Monte Carlo simulation!” is performed, the roughness
is typically as shown in Fig. 1(b). In contrast to the
nucleation theories, there is only a weak correlation
between stems and partial stems in the direction paral-
lel to the growth face (coordinate y in Fig. 1).

We now simplify the model further so as to neglect
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FIG. 1. (a) Schematic diagram of the three-dimensional
model used for Monte Carlo calculations (see text). (b)
Simulated crystal (Ref. 17) (‘‘substrate’ not shown). (c)
Two-dimensional model which is the basis for the rate equa-
tions in this paper.
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lateral correlations entirely. The result is a 2D model
as in Fig. 1(c). n is the sequence number of stems,
n=1 corresponding to the stem with the largest x
coordinate. The exact form of the pinning was not
found to have a fundamental effect, and for this study
we have employed a particularly simple one: Addi-
tions and removals can occur only at the outermost
stem positions (i.e., at n=1). The following changes
are allowed. (1) Initiation of a new stem by addition
of a single unit beyond the outermost position. (In
this case n =1 refers to the new stem, and the previ-
ous outermost stem corresponds, after the addition, to
n=2) (2) Extension of a stem by one unit. (3)
Reduction of a stem by one unit. In the case where
the existing outermost stem only has one unit, that
unit is removed and a stem is destroyed. Figure 1(c)
describes all but the stem removal events. The rules
which result have the great advantage that there is a
strictly sequential set of processes. Such systems are
tractable by using sets of rate equations (see, e.g., Vol-
mer!®), which permits accurate calculations of the
properties of the system; e.g., growth rates and lamel-
lar thicknesses. Unambiguous data can be obtained
from numerical solutions of the set of rate equations.
Monte Carlo simulations, while more generally appli-

cable, always involve a significant amount of statistical
uncertainty. This uncertainty in the data often ob-
scures the trends that would reveal the nature of the
mechanism that is being investigated.

The rate constants for the various possible events
are as follows. Both types of additions, those to an ex-
isting stem or creation of a new stem of unit length,
have the rate k*. Removal rate constants are given by

k== k+e(Af—en’)/ch,

(1

where T is the crystallization temperature, — A fis the
bulk energy change on crystallization multiplied by
T./TY, with T2 the melting point of an infinite crys-
tal, € is the energy associated with breaking a bond,
and n’ is the number of bonds broken when a unit is
removed. C,(i) is the fraction of stems at position n
behind the ‘‘growth face’ which have length i It is
also necessary to specify a function which determines
the correlations in probabilities for adjacent stems;
f,(i,j) is the conditional probability that the (n+1)th
stem is of length j given that the nth stem is of length
i. It turns out!? that £, (i) is independent of n. The
probability P,(i,j) of having stems of length iat nand
jat n+1is then f(ij)/C,(i). The rate equations are
then constructed as follows: For i > 1,

iif'd(:l=k+Pl(i—l,j)+k‘(i+1,j)P1(i+1,j)—k+P1(i,j)
— k=GP Gij)+P (L) k= (L) fCGj)— kT PCij), (2
fori=1,
dP(ij
-—‘((1;—J)={k+C1(j)—k+P1(1,j)}+k"(2,j)P1(2,j)—k+P1(1,j)
—k~(LHP (L) +P (1, D)k~ (1, 1) £(1,j). (3

The rate constants for removal, from Eq. (1), are
given by, for example,

k= (ij)=expl (Af—2€)/kT,}

(i>1, j>1i),
k= (ij)=exp{(Af—e€)/kT,}

(i=1, j>1i).

(4a)

(4b)

The various terms on the right in Egs. (2) and (3)
originate from the various possible processes, as listed
as follows for the case i=1. The first and second
terms [in braces, right-hand side of Eq. (3)] corre-
spond to finding a stem of length j not equal to 1 at
n=1 and adding to it a stem (the model only allows
new stems to have length 1). The third term accounts
for removal of one unit from a stem of 2, and the
fourth, adding onto a stem of 1 so as to create a stem
of 2 (thus eliminating a stem of length 1). The fifth
and sixth terms allow for the removal of a stem of
length one in the case where the stem in position 2 is

not of length 1, and in the case where it is of length 1,
respectively.

Initial values of the P(i ) were chosen (e.g., all
stems the same length) and then their changes after a
small increment in time were calculated from Egs. (2)
and (3). Values of i and j were considered up to a
maximum N, which was chosen in each case to give
small values of P(N,j). The updated P (i j) were then
used in turn to calculate another set of differentials.
By this means transients in stem configurations can be
studied. Clearly a case of special interest is that of the
steady state where the differentials become zero. This
could commonly be attained after about 1000 itera-
tions. The growth rate is given by the difference in at-
tachment and detachment rates for stems at n = 1:

N N
G=k*3 C(i)— 3 k(1,)iC,(i).

i=1 i=1

)

The average thickness / was taken to be the average
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stem length at n = 20:
N N =1
3 iCyli) zcm(i)] .
i=1 i=1

For n less than about 8, the average stem length de-
creases as n decreases to 1. With n as large as 20, this
tapering effect is negligible and a measure of the stem
length in the body of the ‘‘crystal’’ is obtained.

Figures 2 and 3 show the results for / and G
(e/kT3=1.8) in the same format as is usual for poly-
mer crystals. N was in general about twice / Clearly
the trends are those found in experiment and in previ-
ous theories based on quite different models:
I~AT"! and G ~exp(K,/T,AT), where K, is a
constant.?? The absolute values for / are small com-
pared with experiment for the case of polyethylene:
This is because!’ suitably high fold energies have not
been incorporated. The broken line corresponds to the
minimum / value with the assumption that (fold) sur-
face free energy is equal to surface energy li.e., use of
Eq. (5) of Ref. 17). [can be smaller than this because
of surface entropy. The plot of G is concave; this is
found for some actual polymer crystal systems. These
results compare with straight or convex G plots for the
Monte Carlo 3D model.!”

The explanation of these results is as follows. There
is a free-energy barrier to growth, whose magnitude

L{units)
T
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FIG. 2. Average stem length /subsequent to growth ob-
tained from the rate equations. The dashed line indicates
T3/2AT (see text).
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increases with /, as in the nucleation model. However,
on rough surfaces the saddle point is a state of low en-
tropy instead of the high-energy state of nucleation
theory. In the majority of states accessible to the
growth face, the 2D crystal is tapered at the edge, with
the average stem in this region shorter than the aver-
age lamellar thickness. Furthermore, many of these
stems are pinned as a consequence of the presence of
additional stems in the direction of growth (i.e., they
are not at position n=1). Since they are in general
too short to produce a stable crystal, they effectively
block the growth at that point. Growth can proceed
only by fluctuations that remove some of the material
in the edge, thereby freeing the stems for extension.
These fluctuations become much less likely in the case
of thick lamellae that are formed at small values of
AT, because so many more configurations are then
available for the tapered region. It seems likely that
the number of tapered configurations will go up ap-
proximately exponentially with [ Hence G will de-
crease exponentially with / and if /~AT~!, the ex-
ponent is proportional to AT~! as is observed. In
terms of a free-energy barrier AF* which is entropic,
A F* should be roughly linear in / (cf. the energy bar-
rier arising from the creation of steps in the growth
face which is also proportional to / in nucleation
theories). It is the dependence of G on [ which is the
primary effect, and the dependence on AT is mainly a
consequence of this. When /values are constrained to
be constant for at least some range of AT, the depen-
dence of Gon AT is then found to be only linear, both
for experimental data?! on polyethylene oxide and for
results of simulation.??

In conclusion, the model presented here is con-
sistent with experimental observations for polymer
lamellae growing with either straight or curved
(stepped) growth faces. It appears to reproduce the
two striking observations concerning these crystals:
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FIG. 3. Growth rate G plotted in a form appropriate for
nucleation-limited growth (Refs. 3 and 20). The uncertainty
in the data points is small compared with the size of the
symbols.
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(i) the decrease in thickness with supercooling A7,
and (ii) the steep exponential dependence of growth
rate with AT. These trends have previously been ex-
plained by the existence of a high energy (enthalpy)
barrier to growth due to the creation of steps in the
growth face. However, very high values for this bar-
rier must be included (about 10k7) which are not
compatible with the observation that such steps are
often very numerous. An entropic barrier has been
identified for growth on rough growth faces, and it is
proposed that this mechanism can occur during poly-
mer crystallization.
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FIG. 1. (a) Schematic diagram of the three-dimensional
model used for Monte Carlo calculations (see text). (b)
Simulated crystal (Ref. 17) (“‘substrate’® not shown). (c)
Two-dimensional model which is the basis for the rate equa-
tions in this paper.



