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Vibrational Anomalies Are Not Generally Due to Fractal Geometry:
Comments on Proteins
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Deviations in a d-dimensional Euclidean connected lattice of the spectral number (cumulative) of
vibrational states from the frequently generalized formula iV(cu) cc cu, i.e. , density p(cu) ~ re~ ', are
common at very low frequency in many materials (e.g. , crystalline), and are not related to disorder
or fractal connectivity. These anomalies have been shown to be due to strong anisotropy, or to
noncentral molecular-type forces, or both. The apparent spectral densities seen in globular and
sheet proteins are compatible with conventional theoretical models dominated by molecular bond-
bending or torsional forces.

PACS numbers: 64.60.Ak, 63.50, +x, 87.15.—v

Recently there has been much discussion of the
dynamics of polymers, biological molecules, glasses,
and other nontraditional materials. Simultaneously,
new insights, particularly the concept of fractals, ' have
developed to describe the structure of various disor-
dered network materials. Orbach2 and others have
developed theories of vibrational spectra on fractals,
proposing that anomalous vibrational-state densities
occur in frequency regimes determined by the fractal
structure. While we do not question that possibility, it
is the purpose of this Letter to show that the inverse
conclusion —anomalous vibrational spectra imply frac-
tal structure —cannot generally be drawn on either ex-
perimental or theoretical grounds. We also call atten-
tion to the fact that the unqualified assertion that the
cumulative vibrational-state density N(to)~tod in a
Euclidean connected structure, and conclusions
derived therefrom, are generally irrelevant except in a
world of cubic, square, or linear lattices, with central
forces and at very low frequency. Deviations from this
unjustifiably generalized Ansatz are widely found in
crystalline materials, as a result of anisotropy and im-
portant noncentral forces, and are familiar in chemis-
try and materials science.

Of particular recent interest are the experimental
and theoretical studies by Stapleton3 and co-workers
on the vibrational spectra in proteins. Fractons (i.e.,
fractal phonons) have been proposed as the source of
"anomalies" in the temperature dependence of the
(Raman) two-phonon electron-spin relaxation rate of
low-spin ferric-ion-containing proteins. Since these
observations are potentially of considerable biological
importance, it is important to explore all possible alter-
native explanations; it is our view that there is no
compelling need to invoke fractal concepts to explain
the dynamics

Before proceeding to a discussion of the underlying
physical and theoretical basis for the assertions above,
we call attention to the history of experimental studies
of the heat capacity in a number of "anomalous" ma-
terials. Figure 1 shows data for a variety of materials,

ail good 3D crystalline samples Ga. llium and graphite
show accurately a T dependence of C„ from 10 to 40
K; crystalline seleniums yields C„=k, T" with
n=1 38, T=25 K; n= 1 71, T=20 K' n =2 56,
T=15 K; i.e. , not really a power law! Not shown are
diamond, 6 quartz, 7 cristobalite, and vitreous silicas; all
show excess density of states ( T/8 —0.05) which can-
not be deduced from elastic-constant data. Nor can
these be assigned specifically to an amorphous struc-
ture; indeed Bilir and Phillipss show that crystalline
cristobalite and vitreous silica have essentially the
same heat capacity, and their neutron spectra are not
significantly different. In fact, it is likely that the prin-
cipal anomalies are quite adequately explained as due
to rocking motions of Si04 tetrahedra'0" superim-
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FIG. l. Anamolous heat capacity of crystaIIine gallium,
graphite, and selenium. [After Desorba (Refs. 4 and 5).]
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posed on the normal T3 term. Moreover, the
anomalous heat capacity of crystalline germanium has
been clearly traced to noncentral forces. '2

We proceed next to discuss in physical terms why

(A) strong anisotropy and (B) noncentral forces vitiate
the generality of the "Oi~ principle.

" While the discus-
sion here is qualitative, the application to graphite was

studied both experimentally'3 and theoretically'4 to
high precision in the period 1950-1965 for highly per-
fect crystalline (3D) graphite where X(0~) = co~

over several decades except below 2 K; it serves as a
teaching example. We also note in passing that con-
siderations similar to those reviewed here have been
appearing in studies of the elasticity of percolating net-
works. '5 Central forces yield different scaling relations
from bond-bending forces, and crossover effects oc-
cur. Unfortunately, two-center force models, which
cannot simulate angular or torsional forces, and are
not invariant under rigid rotation, are frequently used
uncritically in computer simulations.

Consider (A) first, the consequence of strong ani-
sotropy in the atomic interactions. A widely used
phenomenological theory for discussing the heat ca-
pacity of such systems was put forth and applied to a
variety of substances by Tarasov'6 '8 and has been
used widely in discussing polymers and anisotropic
materials. For example, for a crystal composed of in-

teracting chains,

1(3) g „/AT ( / 1)2
dx

+ 9RT' +3 T x'e"
, dx. (1)

e,e, .o (~"—1)'
This expression exhibits a crossover from T3 behavior
below T= 83 to a linear heat capactiy at higher tem-
perature. In crystalline polymers'7 and other chainlike
lattices'8 &3 may range from a few degrees to tens of
degrees Kelvin.

An analogous expression applies to layered materi-
als. For the case of graphite Tarasov's phenomenolog-
ical method was placed on a quantitative footing by
Krumhansl and Brooks. '4 In brief, their derivation
was as follows: (i) For a highly anisotropic crystal with
widely spaced layers, an appropriate dispersion rela-
tionship for phonons has the form

co'= cj2j (k„'+ k')

+ 2(c,'/~2) ) (1—cosk, 7, ). (2)

Here 7~ is the spacing between layers, c~I and c~ are
the in-plane and perpendicular sound speeds, respec-
tively, and the long-wave approximation has been as-
sumed for the fast propagation along layers. (ii) To
calculate the total number of states having frequency
up to co one needs to know the volume enclosed in k

space by the surface Qi = const. (iii) The maximum fre-
quency for purely perpendicular propagation is co3

(ci/vi ), and this is the crossover frequency below
which W(cu)~ ru3, but above which the Brillouin zone
is truncated and W(0i)~0i2. The resulting formula
closely resembles Tarasov's but provides additional in-
terpolation terms, demonstrating one possible source
of deviations from W(cu)~oi~ without recourse to
anomalous connectivity. Generally, except for the
crossover region cu = co3, where the constant-fre-
quency ellipse just touches the Brillouin zone,

X(oi) CC CU, GU ( Q)3,

W(Ql) CC Ql, Ql O' Q)3, chains, (3)

&(Qi)~o&, bendable interacting layers, co) m„,

&(o))~~ ~, bendable blob, co) cu„.

N(cu) ~ cu2, cu ) co3, layers.

In essence, in highly anisotropic materials there are
various "Debye" temperatures, some very low
indeed, which give rise to anomalous state density and
specific heat.

However, as time went on, deviations from
Tarasov's formula were frequently found, and further
measurements on graphite gave contradictory values
of elastic constants, between heat-capacity and elastic
measurements. '9 20 It then became apparent more or
less simultaneously to a number of investigators, 2O that
when one addressed loosely packed chains or layers
the central forces (which are pairwise) might be less
important than "bond bending" and "dihedral twist"
molecular forces (three and four center, respectively).
As it turned out, the introduction of these resolved the
contradiction in graphite to a highly quantitative de-
gree, but the physical concepts are applicable generally
and present a fundamentally different source of devia-
tion from the canonical density-of-states formula, case
(B).

Molecular valence-bond forces were modeled2' by
potential functions more recently familiar in liquid-
crystal theory. Thus, for pure bending motion and
transverse displacements u (x, r), p u = o t~ (t) /Bx ) u,
whence co2=a.4~~k~~. In addition, for chains interacting
weakly, interchain terms lead to a dispersion relation
(for long waves)

cu = ci ( k„+k ) + c(i k, + o ii k, . (4)
There is now a new "nongeometric" crossover fre-
quency co„determined by c[~ = ~t~ k, k = 0 = k . Cal-
culating the appropriate volume of k space of various
systems, one finds

Q(~) cx ~, always, QJ ( QJX,

&(~)~ ~ ~, bendable interacting chains,
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Note the amusing fact that this source of spectral
anomaly leads in the case of layers to the same depen-
dence, N(co)~to2, as the anistropy anomaly. This al-

ternative was first noted by Komatsu for graphite,
and subsequently confirmed quantitatively by the au-
thor and others. '9 22 The to5t2 dependence for chain
crystals also appeared in a specific model for a polymer
crystal proposed by Stockmayer and Hecht. 23

While the above is qualitatively correct for simple
linear molecules the actual situation for real molecules
is clearly more complicated. It appears24 that there is a
choice between either of two representational bases:
(a) Use Cartesian coordinates for each atom, in which
case the mass matrix is diagonal but the potential ma-
trix must include many-center interactions explicitly to
properly represent bending and torsional forces; or (b)
use natural variables such as bond angles or torsional
(dihedral) angles, in which case the mass matrix is not
diagonal. Mean-field models generally do not take
these factors into account, yet those are just the in-

gredients which can produce low-frequency variations
from the simple Debye rule.

It is now interesting to note the consequences of re-
garding a globular protein as a bendable blob. What is
envisaged is that the low-frequency modes of globular
stuctures are primarily isotropic, shear in nature, and
resisted by bending forces in the polypeptide chain. At
the very, very lowest frequencies %(co)~to3, but
above the crossover frequency, iV(co) ~ to3t2 and
p(to)~cott2. The observations by Stapleton and co-
workers3 on a number of globular proteins yield vari-
ous exponents close to this, and the low-frequency
density of states computed by Go, Noguti, and Nishi-
kawa25 for the protein bovine pancreatic trypsin inhibi-
tor (BPTI) can be fitted well with an exponent of 0.5.
On the other hand, Daurel, Delhaes, and Dupart26

measured the heat capacity of p-sheet poly (L-valine)
protein and found that the data could be fitted nicely
by a 2D Tarasov model between 2 and 300 K, with

&3 —25 K and &2 —130 K; however, as noted above,
in "2D" structures either the bond-bending or
Tarasov models lead to the same temperature depen-
dence. The concepts above can be extended further in
many directions. For example, in some models of
purely torsional forces one can find the dispersion
to ~K . In combination with other interactions, it is
quite possible to reproduce state densities p(to) with
exponents —,', —,', and other; the ways in which this can
be done need not be unique. Further detailed study is
called for.

In summary, the main purpose of this communica-
tion is to recall and emphasize that anisotropy and
molecular bending forces in themselves are sufftcient
to explain a wide variety of observed deviations from
the N(ro) ~ to~ rule, which is not universal in any prac-
tical sense. Qualitatively, protein dynamics seem to be

in accord with state densities expected of
bending and twisting models. This is not surprising
since the main degrees of freedom are of this type. A
more quantitative application of these methods to re-
cent experiments will be presented elsewhere.

%e close with a genera1 comment on the dynamics
of fractals. There is no doubt that globular materials
exist with mass fractal dimension D such that the mass
M(r) = BrD and D & 3. However, there certainly are
cases where this dimension is irrelevant to the molecu-
lar dynamics. Specifically, consider a loosely (fractally
coiled) chain composed of monomer units interacting
strongly with their immediate neighbors only. The
spatial irregularity has nothing to do with the structure
of the dynamical matrix describing the harmonic
motion, as long as the sequence of monomer variables
can be ordered one to one on the diagonal with only
nearby off-diagonal elements. If the units are nearly
identical, there is effectively translational symmetry
for mathematical purposes. The loss of density perio-
dicity in laboratory space is more or less irrelevant to
the eigenvalue problem. In fact, there is an extensive
chemical literature on n-alkanes, paraffins, poly-
ethylene, etc. , where vibrational spectra are computed
aS "to VS phaSe,

"
nOt "to VS k".27

I am indebted to Harvey Stapleton for stimulating
my interests in these issues in biopolymers, to Robert
Pohl and Bernhard Wunderlich for sharing with me
their encyclopedic knowledge of phonons in crystalline
materials and polymers, respectively, and to Chris
Henley for comments. We hope that we have not fol-
lowed the advice of an old German theorist to one of
his younger collegues: "Warum einfach machen wenn
es kompliziert sein kann es ist so schon'?" Partial sup-
port for this work was received from the U.S. Naval
Air Systems Command.
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