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Linear and Nonlinear Theory of Cherenkov Maser Operation in the Intense
Relativistic Beam Regime
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The linear dispersion relation for axisymmetric TM modes in a cylindrical waveguide lined with a
dielectric material and enclosing a thin annular electron beam is derived and solved. Approximate
analytic solutions are obtained for both weak and moderate beam regimes. A model of nonlinear
saturation is developed. This model, combined with the linear theory in the moderate beam re-
gime, defines the most efficient and compact Cherenkov maser.

PACS numbers: 42.52.+x, 52.35.M~, 52.40.0b, 85, 10.Hy

There have been a number of investigations of the
so-called Cherenkov maser —an electron beam in-
teracting with a dielectric-lined waveguide. Previous
linear analysis confines itself to the "weak beam re-
gime, "' 8 solid beams, 3 plane geometry, or the nu-
merical solution of various dispersion relations that do
not delineate the various aspects of the coupling.
Nonlinear analyses and simulations3 6 9'o have limited
the problem to interactions that are nonrelativistic in
the wave frame. A number of different experiments
have also been carried out. 7 ~ "'2 Independently,
high-brightness, intense, relativistic electron beams
have been generated by use of a foilless diode. '3'4
Although developed for an inertial-confinement fusion
concept that used the relativistic two-stream instabili-
ty, '5 this class of relativistic electron beam might be
applicable to high-power Cherenkov masers. Thus, we
present a linear and nonlinear theory of the Cherenkov
maser in a newly investigated regime associated with
an annular, high-brightness, intense, relativistic elec-
tron beam. The analysis suggests that a high-power
Cherenkov maser with 30'lo efficiency may be possible
with this type of electron beam.

First, we obtain the linear dispersion relation for ax-
isymmetric modes on a thin annular beam in a
dielectric-line cylindrical waveguide. The present der-
viation is similar to previously published ones' and will

only be outlined. Since axisymmetric TM modes
decouple from TE modes, we need only consider the
wave equation for the TM modes. This wave equation
is solved in three regions, the first between the center
of the waveguide and the annular beam, the second

between the annular beam and the dielectric, and the
third inside the dielectric. In general, each solution is
expressed in terms of two independent eigenfunctions
yielding a total of six constants to be determined by
four boundary and two jump conditions. The boun-
dary conditions are as follows: The longitudinal elec-
tric field E, is finite at the origin, E, vanishes at the
conducting waveguide wall, and both E, and the radial
electric displacement ~E„are continuous across the
vacuum-dielectric interface. Here e is the dielectric
constant. In the thin-beam approximation, the two
jump conditions

[E,] =o

[rE„]= 2eikE, I&/(m&blab) (oi —k~b)

are derived respectively from the Faraday and Gauss
laws with a linearized cold-fluid description of the
beam. In Eqs. (1) and (2) the square brackets indicate
the enclosed quantity evaluated at the upper side of
the beam at r = ri+ minus the quantity evaluated at the
lower side of the beam at r = ri, . Furthermore Ib, m,
e, vb, and yi, are respectively the beam current, elec-
tron rest mass, electron charge, electron velocity, and
Lorentz factor. For axisymmetric vacuum TM modes
E, and E, are related by

E, = (ik QE,/8 r ) (cu2/c2 —k )

We have assumed a dependence of exp I i ( kz —

cot�)

I

for the fields. The resulting dispersion relation is

(~/4) (gr„)'Jo(gr„) [f),,'/(~ ku, )'][g,D—, g, D, ] = [Jo(—gr„)D, J, (gr„)D,], —

where

Di =eg[Jo(pr„) Yi(pr&) —Ji(prd) Yo(pr„)], D2= p[Jo(prw) Yo(pre) Jo(prd) Yo(prw)]

gi= Ji(hard) Yo((rq) —Jo(vari, ) Yi(hard), g2= Jo((rg) Yo(vari, ) —Jo((r~) Yo(frd),

(3)

(2= (cuz/c —k2), p = (co e/c —k2), and J„and Y„are Bessel functions of the first kind and nth order. Also
Ob =41i,c /r~Pbyi, lo, where Io= e/mc . Here r„stands for the conducting wall radius and rb for the beam radius.
The dielectric extends from an inner radius rd to r . Equation (3) may also be recovered from Eq. (17) of Ref. 1
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~~ && 20~ && m„ (6)

where cu, and cu; are the frequency and maximum
growth rate of the corresponding instability, and, as we
shall show, happens to be the regime of the most effi-
cient, compact Cherenkov maser operation. Such an
instability occurs at the resonance of the waveguide
and slow-beam modes unmodified by the presence of
current, respectively, co =cok and co = ku&. Thus

, = [2c'/r„(l„—r )]'i'[1—I/eP'] 'i' (7)

o), = [f),,c'/2r„(r r~)a), l'i'. — (8)

Other workers' have investigated only the corre-
sponding weak beam regime, 20b « cu, , in which
co, is again given by Eq. (7), but cu, = ( —', ) 'i2

x [fi I,c /r„(»„—fd)o), ]'i'. According to Eqs. (7) and
(8), frequency is independent of I&, growth rate in the

from Eq. (17) of Ref. 1 in the limit of a cold beam.
We have solved this dispersion relation numerically;

we also seek a simple, approximate analytic solution
appropriate to intense, relativistic beams. For this pur-
pose, we make two approximations: (1) thin dielec-
trics, (r —lq)/r„« 1, and (2) small vacuum phase
factors, (hard) « 4. A posteriori, these conditions are
equivalent to

1 « r~/[2(r„—r~)] && y~(1 —I/e) —1.

Taken together, these restrict the foliowing analysis to
thin but finite thickness dielectrics and relativistic
beams. In this regime Eq. (3) reduces to a coupling
between the dielectric-modified waveguide modes,
o) = + cuk, and two beam modes, (o = k~p + Ap,

(Ql Qlk) (GO+ 0)k) (QJ kUy+ Qy) (Qi k'Uy Qb)

= 20qc'/rd(r„— rd), (5)

where &ok = [k2c2/e+ 2c2/rq(r„— rd) ]'i . Note that
co = + ~k are not the modes which arise by simple ex-
pansion around empty (no beam, no dielectric)
waveguide modes. ~ 8 " In particular, the effective
mode wave number perpendicular to the beam motion
is not proportional to the waveguide radius r„but to
the geometric mean of r and the dielectric thickness
fw fd'

An instability arises whenever the forward wave-
guide mode, co=aok, couples either to both beam
modes when they are degenerate or to only the slow-
beam mode. The first case we refer to as three-wave
coupling and the second as to two-wave coupling.
Here we are primarily concerned with beams strong
enough to separate the slow- and fast-beam modes,
and thus lead to two-wave coupling, but not strong
enough to modify the waveguide modes. This
"moderate beam regime" occurs for

moderate beam regime increases as I&'i, and both are
insensitive to thin-beam position rb . In the strong
beam regime, cu, « 20b, co, is modified by beam
current and the growth rate declines with Iq.

It has not been previously recognized that the non-
linear theory of a relativistic Cherenkov maser is simi-
lar to that of the relativistic two-stream instability.
Thus, when the beam longitudinal velocity spread is
small relative to the difference between the phase
velocity of the most unstable wave and the mean beam
velocity, the Cherenkov maser instability saturates by
the trapping of beam electrons in the wave potential.
Although beam energy spread and angular scatter both
contribute to the longitudinal velocity spread, angular
scatter is the dominant contribution in relativistic elec-
tron beams. '

Because foilless diodes require a strong magnetic
field, a one-dimensional nonlinear analysis is appropri-
ate. We assumed that the beam is initially homogene-
ous and that the trapping dynamics is determined by a
single wave. Furthermore, the relative difference
between the normalized initial beam velocity Pb and
the wave phase velocity P„ is such that 5 = (1 —P„/
Pb) « 1. Consider first the energy lost by an elec-
tron after being trapped and decelerated by the wave.
Let yb be the initial electron energy in the laboratory
frame and yf be the final electron energy in the la-
boratory frame after one-half rotation in phase space.
Then the energy lost by a trapped electron is

(y, ~,)/~b=S/(i+S),
where the strength parameter S is given by

S=2P2 (i0)
In the rigid-rotor model, beam electrons are trapped

and decelerated together in the potential well. If this
model were valid in the relativistic regime, the beam
energy loss would be given by Eq. (9) and would ap-
proach unity for S)) 1. But in the relativistic re-
gime, trapping and deceleration lead to a spread in the
rotation rate because of a spread in the effective mass
of the electrons. However, it has been found that
some fraction of the beam electrons do rotate in phase
space coherently in a fashion similar to the rigid-rotor
model. '~ The remaining electrons are spread out uni-
formly about the initial beam velocity, with a resulting
redistribution of the electron distribution but little
change in energy. The fraction of electrons that rotate
coherently is (y„/yb) 3, where y„= (1 —P 2 ) 'i2. One
additional aspect of the trapping needs to be con-
sidered. As the electrons decelerate in the potential
well, the wave becomes "loaded" and slows down.
This leads to an effective 50% increase in the strength
parameter. '6's It follows that the beam energy loss is

b, E/ybmc =1.5S(1+15$). (i 1)

where S, given by Eq. (10), is calculated from linear
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8 5( f32 I)3/2
E„(kA) =

ln(r„/rb) —(1 —I/e) 1 (rn/r~)
(13)

Using Eq. (13) and energy conservation, we obtain a
space-charge-depressed beam energy of 550 keV. The
numerical solution of the dispersion relation, Eq. (3),
predicts a wavelength of 3.6 cm and a strength parame-
ter of 0.52 for this energy. A wavelength of 3.5 cm
was observed. Equation (11) predicts an efficiency of
30% based on diode voltage, a factor of 2 higher than
the 15% reported. However, in the experiment there
appears to be a thin foil separating the diode region
from the dielectric cylinder. No statement is made

theory. In the weak beam limit, Eq. (11) predicts that
the efficiency is proportional to lb'~3, consistent with
simulation. 'o It is also correct for beams that are rela-
tivistic in the wave frame,

The energy loss predicted by Eq. (11) neglects beam
scatter; this is accounted for in the so-called "quasi-
hydrodynamic" model. 'b Unlike Eq. (11), which
reduces to the nonrelativistic rigid-rotor result, the
quasihydrodynamic model is not valid for nonrelativis-
tic electrons beams. The model assumes that beam
scatter further reduces the fraction of electrons that
rotate coherently in phase space. With the angular
scatter denoted by 8, the quasihydrodynamic model
gives

6E/yb mC2

= [I —exp( —2A/82) ]1.5$(l + 1.5S) s (12)

Thus, for the purpose of energy transfer, a beam is
cold when 82 && 2h.

Note that the nonlinear evolution is determined by
the wave phase velocity, not the growth rate. The in-
stability growth rate and group velocity determine the
interaction length. Thus, high efficiency and short in-
teraction length are separate requirements. In particu-
lar, if the length of the dielectrics is not matched to
the interaction length, the energy lost by the beam will

be less than that given by Eq. (12). For a short system
the instability has not saturated while for a long system
the beam electrons absorb energy back from the wave.

A number of experiments have been reported. Here
we describe the Cherenkov maser experiment with the
highest power output. '2 A 2.8-mm-radius annular
electron beam was propagated through a 80-cm-long
dielectric cylinder with an inside radius of 3 cm and an
outside radius of 5 cm. The dielectric was Texlite with
a dielectric constant given by s=3.67. Peak power
output was 580 MW. For a diode voltage of 650 keV
the beam current was 6.5 kA. In evaluating this exper-
iment, one must consider space-charge effects. If yq is
the diode voltage, the space-charge limiting current for
an annular electron beam propagating through a
dielectric-lined waveguide is

concerning the nature of this foil, but it could signifi-
cantly reduce the efficiency by scattering the beam.
For example, the quasihydrodynamic model, Eq. (12),
reduces the efficiency to 20% for a 25-p, m Ti foil.
Also, the e-folding length for the instability is about
7.4 cm. Although it is difficult to estimate the number
of e folds required for saturation, as it depends upon
the noise level on the beam, it is generally six to eight.
But the dielectric length is nearly eleven e folds, thus
allowing wave energy to be transferred back into beam
energy.

Significantly, given the beam quality and dielectric
length, the parameters of this relatively successful ex-
periment place it close to the most efficient one possi-
ble in the above described moderate beam or two-wave
coupling regime. Efficient operation in the three-wave
coupling regime is also possible, but convective growth
lengths are longer than for the two-wave coupling re-
gime because growth rates are smaller and phase velo-
cities are larger. Therefore, the simultaneous require-
ments of efficiency and short interaction lengths dic-
tate Cherenkov maser operation in the two-wave cou-
pling regime.

A simple relationship among physical parameters
describing this regime follows. According to Eq. (11),
maximum energy loss occurs when S= —', . With use
of the definitions of S and b and an approximate ex-
pression for P„appropriate to the two-wave coupling
regime, b, = Ab/co„, where co, is given by Eq. (7), this
fact becomes

g =Pbybf) b/~r (14)

Given the definition of Ab, this equation describes the
relationship among beam current lb and other physical
parameters which ensures the most efficient two-wave
coupling. Now, using Eq. (14) to eliminate Q, b from
inequalities (4) and (6), we can describe this regime in
terms of only the Lorentz factor yb, the dielectric con-
stant s and thickness r„—rd, and the wall radius rd

iH. S. Uhm, J. Appl. Phys. 52, 6533 (1981).
2M. Shoucri, Phys. Fluids 26„2271 (1983).

(15)

In summary, Eqs. (14) and (15), the requirement that
beam scatter be small, and a proper choice of dielectric
length define the most efficient, compact, Cherenkov
masers possible.
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