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Limitations of Heterotic-Superstring Phenomenology
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The low-energy effective theory arising from compactification of the Es S Fs heterotic super-
string on M4x K6 is discussed. Symmetry between the observed and shado~ world will occur only
for manlfolds (of which no examples are yet known) with special values of Tr(R A R). Other
scenarios are described in which no new gauge bosons or chiral fermions appear.
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In order to arrive at chiral fermions in four-di-
mensional Minkowski space-time (M4) after compac-
tification of a superstring theory constructed in Mto it
is essential that there be a Yang-Mills gauge symmetry
in Mio. Of the two anomaly-free choices Q(32) and
Es 8 E8 the latter is more promising phenomenologi-
cally' and hence its implications have been studied
more. By making assumptions about how the Es 8 Es
heterotic string2 reduces to an effective theory in M4,
attempts have been made3 s to identify features, espe-
cially possible new undiscovered "light" particles
predicted by the superstring theory. One obvious ex-
ample is the supersymmetric partners of the known
gauge bosons, quarks, and leptons; these were already
predicted by the older supersymmetry and supergravity
schemes. Two predictions specific to superstrings
have led to phenomenological analyses of (i) an addi-
tional neutral gauge boson6 7 beyond those of
SU(3) 8 SU(2) 8 U(1) and (ii) additional chiral fer-
mionss beyond those of the observed three families, as
expected in, e.g. , 27-plets of E6. Here we emphasize
that none of these extra states are necessary in success-
ful superstring phenomenologies9 and discuss the
specifics of gauge-symmetry-breaking schemes that
contain no such extra states, as well as discussing some
other phenomenologically interesting alternatives.

The principal step in making contact with physics in

M4 is in compactification of six spatial dimensions to a
size too small to have been yet observed ( & 10
cm) and arguablyto not much larger than the Planck
scale, 10 33 cm. Unlike the manifolds first discussed'
it is now believed3 " that this six-dimensional mani-
fold must be Ricci flat and Kihler; that is„ it is a
Calabi- Yau space (K) with SU(3) holonomy. The
number of chiral families is nf= —,

' I&(K) I,

X(K) is the Euler characteristic of the simply connect-
ed Calabi-Yau manifold, and the gauge group SU(3) of
EsDSU(3) 8 E6 is identified with the SU(3) spin
connection of K. This gives an unacceptably large nf,
and it is necessary3 to reduce X(K) by considering a
multiply connected quotient manifold K/G obtained
by factoring out a discrete symmetry group G that acts
freely on K; the resulting X is X=X(K)/dim(G). In
this way, an acceptable nf such as 3 or 4 can be ob-
tained. '2 In the more general cases that we analyze
below, the role of the holonomy group of K will be
played by the structure group SU(N) (N = 3, 4, 5) of a
stable holomorphic bundle. For N = 3 this just
reduces to the holonomy group of K. In the cases
N = 4 or 5 the calculation of the number of families is
generalized to nf = —,

' [c3(K/G)], where [c3(K/G)] is
the third Chem number of the bundle over the mani-
fold and [c3(K/G)] = [c3(K)]/dim(G). The unbro-
ken gauge group at this stage will be at most E6 and
depends on vacuum expectation values for matter
fields in flat directions for the cases N = 4 and 5.

At the same time, and very attractively, these
theories allow gauge-symmetry breaking by arranging
that noncontractable Wilson loops on the multiply con-
nected manifold have nonzero vacuum values. That
1s,

U=&exp(J t'A~ dx~) (1)

is not equal to 1, although I „vanishes everywhere
(H denotes path ordering). For an Abelian discrete
symmetry this corresponds to Hosotani's symmetry-
breaking scheme'3 for Kaluza-Klein theories; it is
group-theoretically equivalent to Higgs scalars in the
adjoint representation and hence rank preserving. For
a non-Abelian discrete symmetry, the rank can be re-
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Es &SU(9),

248= 80 8 84 8 84',

EiiDO(16),

248 = 120(vector) 8 128(spinor),

ESDSU(2) S Ep,

248= (3, 1) 8 (1, 133) 8 (2, 56).

(sa)

(6b)

(7a)

(7b)

This completes the list of five regular maximal sub-
algebras.

Consider the N=3 case first, where SU(3) is the
holonomy group of E. Now in (4) put the SU(3)

duced.
Before discussing symmetry breaking, let us first re-

call the important consistency condition

trF h F= 30 trR A R

which restricts the embedding of the SU 0) holonomy
in the gauge group E8 E8. Initially we shall ignore
Es and assume that it remains exact (we shall later re-
lax this assumption). Then for the embedding

E8DSU(3) E6, (3a)
248= (8, 1) 8 (1,78)

8 (3, 27) 8 (3",27'), (3b)

one satisfies Eq. (2) because the quadratic Casimir
operator of the S is 3 times that of (3 8 3") and hence
the 24S counts as 30(3 8 3") or 30(6) of O(6). One
then arrives at nf 27-piet families of E6 and these con-
tain chiral fermions —particularly a (5 8 5') of the
SU(5) subgroup —beyond the observed (10 8 5'). If
we assume that the nontrivial Wilson lines, Eq. (I),
are in singlets of the SU(3) holonomy, i.e., in the
(1,78) of Eq. (3b), then the symmetry breaking of E6
by a non-Abelian discrete group G cannot reduce the
rank below 5 while keeping the correct weak hyper-
charges of the quarks and leptons. Writing E6
DSU(3), S SU(3)L S SU(3)z one finds that with
the SU(2) of weak isospin in SU(3)L the weak hyper-
charge U(l)r lies in both SU(3)L and SU(3)ii and
hence an orthogonal U (1) must be left unbro-
ken.

Let us reexamine the consistency condition, Eq. (2),
and make an observation which becomes important
when we look at more general cases of a theory with
an SU(N) structure group (N~ 3), and a nonsimply
connected Calabi-Yau space with non-Abelian discrete
symmetry G. Consider the regular maximal subalge-
bras of Es other than (3) above:

E,~SU(S) e SU(S), (4a)

248= (24, 1) 8 (1,24) 8 (5, 10')

8 (5', 10) 8 (10,5) 8 (10'), (4b)

holonomy in the first SU(5) so that

5=3 8 2(l), 10=2(3")8 3 8 I,
24=8 8 2(3 8 3") 8 4(1).

Thus we have 8+27(3 8 3"), hence satisfying Eq.
(2). In (5) write 9=3 8 6(1), whereupon

80=8 8 6(3 8 3') 8 singlets,

84 8 $4'=21(3 8 3') 8 singlets,

and Eq. (2) is satisfied. In (6) put 16=3 8 3'
8 10(1),giving

120=8 8 ll(3 8 3') 8 singlets,

128 = 16(3 8 3') 8 singlets,

to see that Eq. (2) is consistent. Finally even (7) is
consistent for an SU(2) holonomy —as in breaking'5
from Mio to M6&&K3—since the triplet of SU(2)
counts as four doublets. Thus the consistency condi-
tion Eq. (2) is satisfied f'or any of the regular maximal
subalgebras of Ez. More generally if we embedded
SU(N) in an SU(5) of (4a) with 5 = (N) 8 (5
—N) (1) then either there results 15 8 10(6)
+11(48 4") of an SU(4) structure group which is
equivalent to 30(4+4') 's, or there results
24 8 5(10 8 10') 8 10(5 8 5") which is equivalent
to 30(58 5')'s of the SU(5) structure. Both cases
obviously satisfy Eq. (2). Likewise with the embed-
ding 9+N 8 (9—N)(1) of SU(N) in SU(9) or with
16=(N8 N')+(16 —2N)(l) of O(16) we find Eq.
(2) satisfied. I.e. , we have the equivalent of
30(N 8 N')'s of SU(N) for all the above embedding
for N = 3, 4, or 5; and the unbroken gauge group is ar-
ranged to be E6, O(10), or SU(5), respectively. None
of this is too surprising since these can be seen to be
gauge-equivalent rearrangements of the "regular"
embedding of SU(N) in E8. The "irregular" embed-
dings of SU(N) in Es corresponding to various special
maximal subgroups of Es are quite a different story as
we will now show.

Consider, for example„ the maximal G2 8 F4
subalgebra of Es. If we place the SU(3) holonomy in

G2, then under SU(3) S F4 the 24& of E8 is

(8, 1) 8 (3 8 3",1) 8 (1,26)

8 (1,52) 8 (3 8 3,26),

again equivalent to 30(3 8 3') 's. Now for F4
DSU„(3) S SUii(3) with the 26 of F4 reducing as 26

($, 1) 8 (3, 3) 8 (3', 3'), identifying the SU(3)
hoionomy with SU~(3) satisfies Eq. (2). However,
identifying the holonomy with SU„(3) does not satisfy
Eq. (2) since one finds the equivalent of 60(3
8 3')'s. Similar cautionary remarks hold for other ir-

regular embeddings of the SU(N) structure group in
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the special maximal Es subalgebras. It is amusing to
note (though this point seems moot for phenomeno-
logically acceptable models) that such embeddings al-

ways given an integral multiple of 30(N S N')'s and
never a half odd integer. This in turn seems to pre-
clude the interesting possibility of embedding the
structure group half in E8 and half in E8 in order to
maintain complete symmetry between our world and
the shadow world until manifolds are found (see Sec 6
of Ref. 9) that have Tr(A h R) differing by an integer
[2 in the case of 30(3 8 3') per E8, 4 for the example
of this paragraph, etc.] from its value on Calabi-Yau
spaces of the polynomial in CP(X) type. We will re-
turn below to this interesting idea and provide a way to
at least partially maintain this symmetry.

Let us focus for illustration on the maximal subalge-
bra SU(5) 8 SU(5). Study of the regular maximal
subalgebras leads to similar conclusions.

We now need to consider the action of the non-
Abelian discrete group G. Suppose G has an irreduci-
ble representation (irrep) of the same dimension m as
the defining representation of a given Lie algebra L
and that to every element of G there corresponds a
nontrivial Wilson line. By Schur's lemma the only ma-
trix which commutes with all of G is the unit m x m

matrix; in particular, no generator of the Lie algebra is
left fixed by G. This action on the generators of the
algebra may be extended to an arbitrary representation
of the algebra (though this need no longer be an irrep
of G). Thus, such Wilson lines completely break the
symmetry L.

To illustrate this, we shall assume that there are
Calabi-Yau spaces whose freely acting non-Abelian
discrete group is either the symmetric group S„or its
normal subgroup A„, the alternating group of ,' n!—
even permutations. Aside from one-dimensional
representations we note that S3 has a two-dimensional
irrep, Aq has a three-dimensional irrep, and A5 has
three-, four-, and five-dimensional irreps. In general,
both S + i and A + i (m & 3) have an m-dimensional
irrep. By the observation given above, this action can
completely break SU(m). It is easy to picture this
geometrically: (A +i) S +, are the (proper) discrete
symmetries of the regular polytope'6 n +, , the
( m + 1) simplex in 8 (for example„o4 is a
tetrahedron). Breaking all of these symmetries breaks
the SO(m) rotational invariance of the special maxi-
mal subalgebra SO(m) in SU(m).

For example, the choice G = S3 and a two-di-
mensional representation can break SU(2) completely,
or SU(3) to U(1), SU(4) to SU(2) 8 U(1) and so on;
in the E6 scenario, G=S3 can break to the minimal
rank-5 symmetry SU(3) 8 SU(2) 8 U(l) 8 U(1).
(See the second paper of Ref. 3.)

Consider now the more interesting case of G=A5
(sixty elements). With nontrivial Wilson lines in all

elements, and using the five-dimensional representa-
tion, we may break completely one SU(5). Likewise,
Witten's method9 of identifying an SU(5) structure
group with an SU(5) subgroup of E8 also eliminates an
SU(5). The SU(3) holonomy supplemented with vac-
uum expectation values in the 27 and 2?" along flat
directions fill out the SU(5) while leaving N = 1 super-
syrnmetry intact.

To recapitulate, we can eliminate SU(5) factors
from Es 8 Es in two ways: first by nontrivial Wilson
lines in the five-dimensional irrep of G=A5 (or S5)
for a Calabi-Yau manifold K/G with 7rt(K/G) = G,
and second by the mechanism of Ref. 9. We will call
these the non Abelia-n and structure-group mechanisms
Further rank-preserving symmetry breaking is provid-
ed by nontrivial Wilson loops in Abelian subgroups of
G (A belian mechanism)

A partial solution to the problem of keeping the
symmetry between our world and the shadow world is
now at hand. We eliminate (i.e. , break) an SU(5) in
Es by the structure-group mechanism, and an SU(5)
from Es by the non-Abelian mechanism. '7 Then the
remaining SU(5) and SU(5) ' can be broken to
SU(3) 8 SU(2) 8 U(1) and a shadow [SU(3)
8 SU(2) 8 U(1)]', respectively, by the Abelian

mechanism. We should note that even though the
gauge groups are the same, the matter multiplets are
not equivalent in the two worlds unless n&=0. Thus,
the Georgi-Quinn-Weinberg analyses will differ in the
two cases and we will find, for instance, AQcDA AQcD.

It is also possible to break the SU(5)' completely by
a second application of the non-Abelian mechanism
(rather than using the Abelian mechanism). Then the
shadow Es is completely broken, and so below the
Planck scale we can have "standard" SU(5) (super-
symmetric) grand unification. Similar considerations
are easily worked out for the SU(4) structure group.

In summary, the limitations we have reached make
it seem premature to propose definitive phenomeno-
logical tests for superstrings, particularly those requir-
ing new light gauge bosons or chiral fermions, until
superstring dynamics have been shown to select the
topology of the compact manifold. This seems out of
reach at present.

Compactiflcation can leave N = 1 supersymmetry
unbroken but this must be broken at some energy
scale; this supersymmetry-breaking mechanism is not
well understood at present. If we assume that super-
symmetry is broken at a very high energy' near the
Planck mass, then the result could be nonsupersym-
metric SU(5) grand unification which has phe-
nomenological difficulty with the lower limit on the
proton lifetime; this can be patched up in several
ways. '9 With supersymmetry broken at low energies'
one will need to investigate in more detail the
phenomenological consequences. Our purpose here is
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only to emphasize the scenarios which avoid any new
particles near the weak scale.

Although we have been discussing Calabi- Yau mani-
folds, the results of Grisaru, van de Ven, and Zanon2o

suggest that the superstring equations of motion are
satisfied only in an orbifold ' limit.
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