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String Propagation in a Tachyon Background
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The equation of motion of the tachyon field is obtained by requiring conformal invariance of the
closed bosonic string propagator in a tachyon background. The cubic tachyon coupling is also ob-
tained in this way. These equations are generalizations of the Kosterlitz-Thouless flo~ equations
and involve nonperturbative contributions to the P functions.

PACS numbers: 11.17.+y, 05.70.Fh, 12.10.6q

String theories' are good candidates for a unified
theory of interactions including gravity. One of the
most important problems in string theory is that of the
determination of its vacuum structure. 2 In the past
year, some progress has been made by the require-
ment of conformal invariance of the two-dimensional
field theories describing string propagation in fixed
backgrounds consisting of condensates of some of the
string modes themselves. 2 4 For massless back-
grounds this requirement yields precisely the equations
of motion obtained from the low-energy limit of the
string theory.

In this Letter we shall study the propagation of a
closed bosonic string in a background consisting of a
condensate of its tachyonic mode. While our results
corroborate the string-theory- o -model connection,
the route is rather subtle. In particular, P functions
calculated by any truncation of the loop expansion give

an entirely wrong result, and hide a crucial phase
structure of the model. This is probably the reason
why a treatment of the tachyon background problem is
missing in the literature.

The world sheet action for a string with coordinates
X"(a.t, o.2) in a background tachyon condensate 4 (x)
is given in the orthonormal gauge by

S= „12o.( (I/4n. a')8 xt'8 x~+ g4(x) ),

where g is a coupling. In the following, we shall write

g = A./a, where X is a dimensionless coupling and a is
the lattice spacing on the world sheet. Furthermore,
we shall write the model in terms of yt' = xt'/(27m') t 2

to bring the kinetic piece into standard form. At the
quantum level the relevant operator C (y) acquires an
anomalous dimension. To compute this, we expand

around a background yg' (tT) in the standard
fashion: yt'(a. ) =yg (o.)+P(~),

e(y) =C(yii)+ X,g"' (""8„, t)„C(yo),
n=l

and the action becomes, for a yo(0. ) satisfying classical equations of motion,

(2)

(3)

In Eq. (3) we have introduced an infrared regulator mass mo. Our final results are, of course, independent of mo.
An effective action for yo(crt) may be obtained by integrating out (. To linear order this may be obtained by sum-
ming over all tadpoles:

S„,[yo] =„' d'o( —,
' (Byo). '+i~(cm02 )exp[ —5 ln(cmo'o. ') ]@(yo) ), (4)

where 5 is the operator

5 = ('7 /87r + I ),
and '7„—= 8/t)yg. c= —„'e2", where y is Fuler's con-
stant. Thus, to this order, conformal invariance of the
model given by Eq. (4) requires &P(y) = 0. What this
means is that the naive scaling dimension of the opera-
tor 4(yo) is canceled by its anomalous dimen-

)

sion —given by (V2/4~)4. Reverting to the original
string variables xt'(tr), one has

[(8/Bxt') 8/Bx~+ 4/ct']4 = 0,

which is the mass-shell condition for the tachyon. The
above facts are, in fact, extremely familiar: Summing
over all tadpoles corresponds to normal ordering of the
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vertex operator which is a consistent vertex on mass
shell.

If one tries to compute the effective action to higher
orders in $ naively, one encounters a puzzle. Normal
ordering seems to be all there is to the model: After
normal ordering of the vertices all individual diagrams
involving @(y0) insertions with internal ( loops are
finite. Since there are no new divergences of order @2,

$, etc. , this implies that Eq. (6) is the only condition
that is required for conformal invariance. From the
string point of view this is clearly wrong: A low-

energy expansion of the string-field-theory action
have, e.g. , @3 terms, since tachyons have a three-point
coupling! 6

To clarify the situation, consider the simplified case
in which C (y) has a single momentum mode in one of
the directions and is of the form @(y)= cosPy. The
world-sheet model (1) is now simply a sine-Gordon
model. The above scenario then amounts to saying
that all infinities in the theory may be removed by nor-
mal ordering of the coupling:

X/a2 l1. (cm0 )exp[(p2/Sm —1)ln(cm0 a') ]. (7)

The sine-Gordon model may, however, be treated
directly by renormalization-group (RG) methodss 9

which shows that the parameter P as well as A. flows
under an RG transformation. It is well known that
this model is equivalent to a Coulomb gas —the non-
trivial flows of P and X are instrumental in giving rise
to the Kosterlitz-Thouless'0 transition from a conduct-
ing to insulating phase.

The crucial point is that as P2 87r the operator
cosPy becomes a marginal operator as is clear from Eq.
(5) and the theory ceases to be super-renormalizable.
While normal ordering makes each individual graph
finite in the a 0 limit, the sum of all graphs
diverges when P2 & Sn, and the naive picture is
wrong. This accounts for the fact that the vacuum of
the normal-ordered theory becomes unstable for
P2 ~ Sn and the theory ceases to make sense. P2 = Sn
is the position of the Kosterlitz-Thouless transition

and the apparent vacuum instability simply signifies a
transition to a different vacuum. In fact, it turns out
that one can define a well-behaved continuum theory
for all P as a double expansion in A. and 5&=P2/
87r —1, in which the renormalized A. and 5~ are held
fixed (rather than X/a2). " The various P functions
have been calculated to be

P~ = 2u5+ A u, Pg = —,', u2+ B5u2, (8)

where A and B are nonuniversal coefficients. Howev-
er, the quantity C = 2A + B, is universal. 9 These P
functions lead to an RG flow diagram similar to that
obtained from Kosterlitz renormalization group.

Returning to the general case, it is now clear that the
loop expansion lies. To get the correct physics one has
to sum over all loops. This may be done in a way simi-
lar to that of Ref. 9. We shall present the main results.
The general strategy will be to expand terms of the
form (a2) D as 1 —D lna + (D /2!) ln2a2 in a region
where D is small and to concentrate on the leading log-
arithmic divergence. This is done in the spirit of the e

expansion, i.e., it is expected that in the final expres-
sion all the logarithms from all the various diagrams
are resummed by the renormalization group and con-
formal invariance is tantamount to the requirement
that the P functions vanish. There is an implicit as-
sumption that this series defines a (nonperturbatively)
renormalizable (in the generalized sense of Friedan'2)
theory. D is, in general, a combination of 51, 52, and
512. Requiring that D acting on $(y, )@(y2). . . be
small has the following interpretation: If L[$(y)] is
the Lagrangean, concentrate on the Fourier mode,
Jd~y e ' L [@(y)) with p12 —0, and similarly on
Jd~y e ' 5L[@(y))/5$ with p2/8~ —1 (this corre-
sponds to the field, that is varied in the action, being
an on-shell tachyon with p2/87r —+1). Thus our
derivation of the tachyon Lagrangean is valid only in a
certain region in momentum space. We need not re-
quire, however, that each of the fields in the
Lagrangean have a definite momentum dependence.

The O($2) contribution to the effective action may
be written as

Seff = (ACm0) „da1 da2(Cm0a ) ' ' D(a12)@(y(at))@(y(a2))

where

51 2
= '721 2/Sm+ I, 512 = —'71'72/Sm +1,

D( „)=e "-~„—1,

~12 (4~) ln[Cm0 (~12+ a ) ] 77+P(a 12 = a 2 a 1).

(10)

(12)

The subscripts 1 and 2 mean that the corresponding operator acts only on qh (y (a.1)) or $(y (a.2) ), respectively. It
is convenient to go over to momentum space in the world sheet:

S,'f~r =2(l1.cm02)) d2q(cm02a2) '+ ' D(q)@1(q)@2(—q), (13)
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D(q) =
~ d~a(qe" "D(a.)q), @(y(o))= d qe'~' @(q). (14)

The divergences in Eq. (13) come from two sources: (a) from the q independent part of the operator D(q) and
(b) from the q~ part of D(q). In the following we shall retain terms up to O(5@~). The divergences of the first
kind may be easily extracted for backgrounds with

(5I+5z —25tz+1)4 (y(o)) )@(y(~p) )

small which corresponds to (p~+ pq) /Sm —+ 1. This infinite piece contributes a term to the action

—YX (cm0 )) da
51+52 +1 y(y(~, ))y(y(~~)) in(cm0a )2 2

25lz —1

If both @(yl) and $(yz) are on shell we can neglect (5I+5&)/(25tz —1), and obtain the cubic term calculated in
string theory (see below). This combines with Eq. (4) above to give a coupling constant renormalization. The
divergence from the q part may be extracted easily in the region where (5~+5& —25tq)$(yt)$(yq) is small which
means (pl+ p, )z —0. This is

d'q q'(I+25lp)4t(q)@g(q) }in(cm0a ), (16)

which reads, in position space,

d a'{8 yt%' 8 y0 [8„$8„@]+25lq8$~ B„gq}lncm0a,

which is a counterterm to the kinetic piece of the effective action. The 5~zglgz piece can be neglected if we are
only interested in on-shell tachyons. The coefficient of this piece is not universal9 so this is just as well.

If the string is coupled to a background gravitational field g„„ there is an additional contribution to the kinetic
pjt q~ 3, 4, 12, 13

—(Sm) '~ d'o. R„„Byg 8 y0 in(cm(~)a'). (18)

Collecting the various divergent, lattice-spacing-dependent terms appearing in the effective action from Eqs. (4),
(15), (16), and (18), one has, to this order,

S,'p~'"'(y ) = —(S~) ' d' 8 yg 8 y" [R„„+4k'7r'(8„@8„@)+25„Q„@,ti„@,]

—A(cm0) d o- +1 @+—@ +—X ~1+~2
P(y~)$(yz) ln(cm0a ).2 2

87r 2 2 25tq —1

Thus, for conformal invariance to hold one must have

R„„=—4&~~z[8„$8„@+O(5$)1,

('7~/87r+ 1)$+—,
'

A. @ = 0(@ ).

(2Oa)

(2ob)

Equation (20b) may be seen to be the equation of motion for the tachyon field —clearly exhibiting a $ interaction.
Further insight may be gained by our treating of the conformal mode'~ of the world-sheet metric properly. In

the conformal gauge the world-sheet metric is y ~(a.) = e~~~ 'q p. The term representing the interaction with the
tachyonic field has an extra factor of e ~t ~. The effect of retaining the p(a ) is equivalent to replacement of a~ by
a~e ~~~ ~ in the coincident propagators for the ( fields. In this framework, the condition for conformal invariance
is simply the requirement that the effective action is independent of p(o ). One now has an extra divergent piece
in the effective action which is proportional to the world-sheet curvature JyR ~~~ = 28 8 p, i.e., a renormalization
of a possible dilaton coupling ' to the string. Noting that there is a contribution to this term at the zero loop'~
level —equal to (D —26)/24m —one has [to O(5$z) ]

S&ff= ' 6 ~', +D —26 1 —R +4m A0—2 2

24~
(~@)' +@' 28 9 p(o)[ln(cm(~)a') .—2p(o-) ].
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Variation with respect to p(a ) leads to

+ —R +4~')t,'—
24~ 16m 2

It may be easily checked that linear combinations of
Eqs. (20a) —(20c) are simply equations of motion fol-
lowing from an action containing the Einstein term for
the metric and a standard action of a tachyonic scalar
field with a @ interaction, and a cosmological constant
proportional to 26 —D.

One can now look for solutions of these equations.
Other than the trivial solution $ = 8 = 0, there are
solutions of the form $ =const = Qo'.

(D —26)i24m' —V(@o) = 0, V'(@o) = 0. (21)

Since V(&0) ( 0, this requires D ( 26 (in contrast to
the situation studied by Nemeschansky and Yan-
kielowicz and by Jain, Shanker, and Wadia' ).
Although this is outside the realm of validity of the
derivation of these equations it suggests that the idea"
that some ten-dimensional string theories correspond
to stable vacua of the bosonic string might have some
dynamical basis. It is also possible that on including
the dilaton field one might find stable tachyon-free
vacua without altering the critical dimension. 3's
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