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We present first results obtained from a simulation of lattice QCD with staggered fermions by a
Monte Carlo algorithm that incorporates the effect of the fermion determinant exactly. The chiral
condensate XX and various Wilson-loop expectation values are measured on a 4 space-time lattice
and the results are compared with the same quantities measured on the same-size lattice with the
pseudofermion method. A quantitatively good agreement is found.
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Numerical simulations of lattice QCD have led us to
a lot of interesting results. An outstanding problem in
this field has been the proper inclusion of the fermion
determinant. In fact, all the early calculations were
done in the quenched approximation, i.e. , without the
determinant. Recently a tremendous effort by various
groups has gone into the development of new fermion
algorithms, as well as into the application of older,
more established algorithms to problems in both
finite-temperature lattice QCD and hadron spectros-
copy. Among the latter, the ones that have been stud-
ied the most are the pseudofermion' and the micro-
canonical method. Both algorithms have been applied
extensively to the simulation of finite-temperature
QCD3 4 and the results that were obtained are in quali-
tative agreement with the expectations one has for the
phase structure of the theory. Furthermore there is
evidence for a quantitative agreement between the two
methods. '

Both of the above methods have obvious shortcom-
ings. The microcanonical method for one is based on
the crucial assumption of ergodicity. If for some
reason (a hidden symmetry, for example) the system
only explores a finite portion of phase space, the
results obtained could be ~rong. On the other hand,

the pseudofermion method explicitly violates detailed
balance. This violation can be kept small by choosing
a small step size in the gauge-field update (large accep-
tance) and a large number of pseudofermionic hits.

An improved version of the microcanonical method
has been presented recently. 6 The basic idea is to "re-
fresh" the conjugate momenta occasionally so as to
build into the method an element of randomness that
the original, fully deterministic one does not have.
However, this algorithm also faces one problem com-
mon to all algorithms. 7 The long- and short-wave-
length modes do not tend to equilibrate at the same
rate, but it takes the long-wavelength modes longer by
a factor proportional to the inverse bare-quark mass
squared. Batrouni et a/. , in their study of an algo-
rithm based on the Langevin equation, show how one
might be able to avoid this problem by the use of
Fourier acceleration methods. This approach looks
very promising and can in principle be applied to any
method that is based on the solution of a differential
equation.

In the implementation of the pseudofermion
method the problem of different rates of convergence
at different length scales has up to now not been
specifically addressed. However, the method is so effi-
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cient that the hope is that by just running long enough
one would achieve equilibration on all scales. For this
to be true one must, however, tune the two crucial
parameters of the method, the number of pseudofer-
mionic hits and the acceptance rate, to values which
amount to a maximum permissible violation of detailed
balance. A question, however, immediately comes to
mind: How do we know that for those values of the
parameters all expectation values will converge to their
true values'? A similar question also needs to be
answered in the case of the algorithms based on the
solution of differential equations. One discretizes
these equations in order to solve them on the comput-
er. The size of the smallest step in the (fictitious)
time direction governs the convergence there.

In this Letter we present the results of our attempt
to answer these important questions. We have written
a program that takes into account the effect of the fer-
mion determinant exactly. The hope is that discrepan-
cies in the expectation values of observables in a com-
parison will help in restricting the allowed ranges of
the parameters of other methods. As an illustrative
example, we will consider the pseudofermion algo-
rithm here. This idea is not new, to be sure; as a
matter of fact the algorithm used in the present paper
is that used by Otto. 9 However, there as well as in
Ref. 7 Wilson fermions were used and the lattice size
was only 24, resulting in a smaller number of observ-
ables to compare. Our results have been obtained on a
4~ lattice and we measured XX and all the planar Wil-
son loops up to the linear dimension 3. While our lat-

tice size is still quite small compared to those em-
ployed in realistic calculations, we believe it suffices
for at least the smaller Wilson loops such as the pla-

quette in the sense that our results should already be
quite close to the infinite-lattice limit. The data
presented here are in a sense preliminary. A complete
study would involve investigation of the stability of

".8—
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FIG. 1. Evolution of the average plaquette by the exact
algorithm. The gauge-field coupling P is 4.8.

the results with respect to the various parameters in-
volved in both the exact algorithm and the other ap-
proximate ones such as the pseudofermion method.
Such an investigation is being pursued presently and
the detailed results will be published soon. to It is
hoped that the results of these studies will set a bench-
mark with which all other fermion algorithms employ-
ing staggered fermions can be compared.

The basic idea of the exact algorithm goes back to
Scalapino and Sugar" who realized in the context of
two-dimensional models that the problem of calculat-
ing the fermionic determinant can be reduced to calcu-
lating the determinant of a rather small matrix. Here
we want to generate an ensemble of configurations in
which the probability of a configuration is given by the
exponential of its action

S = (P/2N) X~(tr Up+ H.c.) + SF,

where SF is given by

SF ——
—,
' X g„(x)X(x)[U„(x)5„„—Ut (y)5„+„]X(y)+ XmX(x)X(x).

x,y, p,

(2)

Our notation is a fairly standard one. Integrating out the fermion fields in (2) leads to the determinan«f the lat-
tice Dirac operator which we will from now on call M„», supressing the color indices. In the numerical simulations
using the conventional Metropolis algorithm what is needed is the quantity

e as= det(l + M '5M) e (3)

In (3) 5M is the change in M under a change 5U„(x) in the link variable U„(x). After a little algebra one easily
obtains the following expression for the determinant ratio in (3):

I —,
' q~(x) M„„'+„5U„—(x) —,

' q„(x)M„'5 U„(x)

,' q„(x)M„+'„—„+„5U~ (x) I + ,' q~(x) M„+t~—„5U„(x)
(4)
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TABLE I. Summary of our data. (Exact algorithm. )

0.415
(0.003)

W(1, 2)

0.177
(0.003)

W(I, 3)

0.074
(0.003)

W(2, 2)

0.035
(0.003)

W(2, 3)

0.008
(0.002)

W(3, 3)
—0.001
(0.002)

0.4018
(0.006)

It should be clear from the above discussion that for
every attempted Metropolis hit for a link variable we
have to calculate, taking into account color, the deter-
minant of a 6X6 matrix. To obtain the matrix ele-
ments of the inverse fermion propagator needed in (4)
we chose to calculate six columns of the inverse using
the conjugate-gradient algorithm. Clearly this is a very
time-consuming method, but it is also known to have
a better convergence'2 irrespective of the value of the
quark mass. Note, however, that no approximations
were made. In particular, the magnitude of 5 U„ is ar-
bitrary. The algorithm can be made more efficient by

doing multiple Metropolis hits per link without much
cost in computer time. It is easy to show that we only
need to know the inverse of the 6X 6 matrix appearing
in (4) in order to compute the new columns of M
from the old ones after a change in U„has been ac-
cepted. We also used the conjugate-gradient method
for this purpose.

In our simulation eight Metropolis hits per link were
done. On our 44 lattice this procedure took ten
minutes per sweep through the lattice, with most of
the time spent finding the columns of the inverse us-
ing the conjugate-gradient algorithm. The average ac-
ceptance per hit was around 43'/o.

Here we compare simple expectation values calculat-
ed with the exact algorithm and the pseudofermion
method. ' The method corresponds to expanding the
determinant ratio (3) in powers of 5U» and keeping
only terms linear in this quantity. The great advantage
of this method is that M ' must only be calculated
once for each sweep through the lattice. The error
resulting from this approximation is 0(5 U2). Clearly
the approximation is only good when 5 U is small.

In our simulations we chose p = 4.8. The reason for
this value is that we wanted to stay away from the
deconfinement transition which one might expect to
occur for four flavors somewhere around 5.1.s The

value of the bare-quark mass was chosen to be 0.1.
This may appear large compared to the masses usually
used in simulations in the quenched approximation.
However, we note that the lattice size considered here
is also smaller. Thus, for example, in a Monte Carlo
renormalization-group study one would choose ma
= 0.04 on a 16~ lattice to compare with the observables
obtained here. As we are in the confined region, we
expect a good signal for XX.

In Fig. 1 we show the plaquette expectation value as
a function of the number of iterations for the exact al-
gorithm. It is remarkable that starting from a complete-

ly thermalized quenched configuration at p = 4.8 the pla-
quette seems to reach its new value after only a few
iterations. This seems to suggest that the effects of
dynamical fermions are perhaps rather small. Further-
more, the remarkable flatness of the curve in Fig. 1

leads us to believe that the averages we compute from
altogether only 240 iterations are the true averages in
the sense that further running would only lead to an
improvement in the statistical errors.

At this point we should mention that also the exact
algorithm contains a source of error apart from the
purely statistical one. In the conjugate-gradient algo-
rithm one calculates the elements of the inverse only
to a specified accuracy. We chose to work here with an
accuracy per element of the inverse of —2X10
We believe that this accuracy is sufficient. We do,
however, plan to study this question systematically. In
the two-dimensional Schwinger model, for example,
an accuracy Bxt2 of —2&&10 3 per element seems to
be sufficient. t3 Here 5xt2 is the square deviation of the
ith component of x from the true value when the
equation M x=y is solved for x by the conjugate-
gradient algorithm.

In Table I we have summarized our results for the
exact algorithm. The averages shown are obtained by
discarding the first fifty iterations. The quoted error in

TABLE II. Summary of our data. (Pseudofermions. )

W(1, I) W(1, 2) W(1, 3) W(2, 2) W(2, 3) W(3, 3) xx/3 Acceptance

0.404
(0.002)
0.416

(0.002)

0.168
(0.002)
0.180

(0.002)

0.070
(0.001)
0.078

(0.001)

0.030
(0.001)
0.037

(0.002)

0.006
(0.001)
0.008

(0.001)

0.001
(0.001)
0.001

(0.001)

0.413
(0.009)
0.409

(0.007)
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TABLE III. Enhancements of the various expectation values from their quenched values for the exact algorithm and the
pseudofermion method at two values of the acceptance.

5 W'(1, 1)

0.041
(0.003)
0.030

(0.002)
0.042

(0.002)

5 W'(l, 2)

0.036
(0.003)
0.027

(0.002)
0.039

(0.002)

5 8'(1, 3)

0.020
(0.003)
0.016

(0.001)
0.024

(0.001)

5 8'(2, 2)

0.015
(0.003)
0.010

(0.001)
0.017

(0.001)

5 W(2, 3)

0.005
(0.002)
0.003

(0.001)
0.005

(0.001)

5 W'(3, 3)
—0.001
(0.002)
0.001

(0.001)
0.001

(0.001)

—S(xx)/3

0.036
(0.006)
0.025

(0.007)
0.029

(0.008)

Acceptance

0.86

the plaquette is based on an analysis of the binned
fluctuation. This error turns out to be almost identical
to the one obtained by considering only every tenth
configuration and computing the standard error. The
rest of the Wilson loops and XX were, therefore, mea-

sured on every tenth configuration. To compute XX

we randomly chose ten sites in the lattice and calculat-

ed the corresponding thirty diagonal elements of M
and averaged over them. Table II shows the results of
our pseudofermionic simulations at P=4.8 for two

values of the average acceptance: 74'/0 and 86'/o in the
first and second row, respectively. The first value is

rather small. Hence one might think that violations of
detailed balance are big, although equilibration time is

small. We did 2440 iterations in this case, discarding
the first 1000 for equilibration. To determine the
equilibration time we followed the standard procedure
of monitoring various expectation values. Once these
are stable apart from fluctuations which are consistent
with being purely statistical, we say that equilibrium
has been reached. The number of pseudofermionic
hits was 24, with four of them discarded. The value of
XX was obtained by use of the last 440 iterations.
Measurements were made on every twentieth config-
uration and we did 240 pseudofermion iterations,
dropping forty of them to arrive at the value for XX in
that configuration. All the errors quoted here have
been corrected for correlations from sweep to sweep. '4

In the second case, corresponding to an 86% average
acceptance, we essentially repeated the above pro-
cedure but with twice as many iterations.

We believe that, considering the rather aggressive
choice of parameters in our pseudofermionic calcula-
tion, the agreement of the numbers in Tables I and II
is remarkably good. This is especially true for the first
row of Table II: XX and all the Wilson loops excepting
the plaquette and the loop W'(l, 2) agree within 1

standard deviation, whereas the plaquette and W(1, 2)
are within 3 standard deviations. One may note,
though, that the difference between the two methods
appears to be systematic in nature: All Wilson loops
are smaller for the pseudofermion method and XX is
larger. This is to be expected since at low acceptance
in the pseudofermionic method the system will tend to

become more disordered. Increasing the acceptance
should therefore decrease these systematic differences.
Results shown in the second row of Table II are clearly
in accord with these naive expectations, as also are
those presented in Ref. 9. Results in Table III confirm
these expectations even more dramatically. What is
shown there is the difference between the expectation
values obtained in the theory with dynamical quarks,
by the above-mentioned algorithms, and those without
them: e.g. , 5 W(1, 1) = W(1, 1)r„„—8'(1, 1)q„,„,„,d.
Comparing the first row of Table III (exact algorithm)
with the second and third (pseudofermion algorithm
with 740/o and 86/o average acceptance), one finds that
the agreement between the exact algorithm and the
pseudofermions (for the higher acceptance) is remark-
able. It shows that the pseudofermion method seems
to able to reproduce correctly the effect of fermion
loops. We should mention here that we have included
XX in Table III for completeness only. XX is a dimen-
sionful quantity and it is therefore not meaningful to
compare the quenched and unquenched values. One
might argue that good agreement in the quantities we
considered only shows that pseudofermions can repro-
duce the short-distance physics with some accuracy,
whereas important physical phenomena such as phase
transitions presumably involve fluctuations on all

length scales. However, local observables such as the
plaquette and XX can be used to monitor, for example,
the deconfining and chiral phase transitions. This
work shows that there is hope that the pseudofermion
method does give the right physics. If this were true,
we would be able to make important quantitative pre-
dictions about QCD in the presence of dynamical fer-
mions, given present day computing resources.

The computations were carried out on the Cray X-
MP of the National Magnetic Fusion Energy Comput-
ing Center, Livermore. We would like to thank M.
Creutz for his support and very valuable discussions
about fermion algorithms. This work was supported
by the U.S. Department of Energy under Contract No.
DE-AC02-76CH00016 and No. DE-AT03-81-
ER40029.
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