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Percolation in Suyerconductive Networks
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The percolation properties and upper critical field of a disordered superconductive square net-
work are calculated by use of the de Gennes-Alexander theory. It is suggested that photolitho-
graphic techniques be used to build such artificially disordered systems. The critical exponent of
the upper critical field is calculated and found to be k =0.93 +0.06 on the metallic side of the per-
colative transition.

PACS numbers: 74.40.+k, 74.60.Ec

Since the pioneering papers of de Gennes'2 and
Alexander34 on inhomogeneous superconductors, a
large amount of both theoretical and experimental
work has been done in the field of superconductive
micronetworks. Application of the model to the case
of regular networks of thin wires gave quite important
and interesting results. 5 9 In particular, in the case of
large (infmite) regular networks, theory and experi-
ment complemented each other nicely, allowing for
the first experimental access to the amusing properties
of the spectrum of these systems. As is known~7 the
(H, T) phase diagram is the envelope of the energy
spectrum of an electron in the same geometry. The
disordered systems which gave rise to the original
ideas of de Gennes and Alexander were inhomogene-
ous superconductors prepared by coevaporation of In
and Ge on a glass substrate. 4 Present-day technology
allows for the manufacture of disordered samples of a
different kind. The photolithographic samples of Ref.

8 could be artificially disordered either by laser irradia-
tion of an originally regular lattice or by computer
design of the mask used in the process. '0 Although
this is not the original problem of inhomogeneous su-
perconductors, it is another example in which theory
and experiment could go hand in hand, since the de
Gennes-Alexander approach can be applied to a
model system of exactly the same characteristics as
that prepared in the laboratory.

In this Letter we study the (H, T) phase diagram of a
square network when nodes are removed at random
(site percolation). The model2 assumes that the cross
section of the wires (or critical temperature T ) is
small enough so that there is no magnetic response
due to the wires themselves; magnetic properties
depend on the topology of the network and on whether
the superconductive state extends over all the system.

We write the Ginzburg-Landau free energy2 (up to
second order in the order parameter) as a sum over
links of the network:

F=.E,X.,„dI(
—)y )'+ g'I [i d/dI+ (2~/@, )W (I) ]y )'}, (1)

where s is the cross section of the wires, E, [ —(1—r)2, with r = T/T the reduced temperature] the condensa-
tion energy per unit volume, ( [ = (0/(I —r)'~2] the temperature-dependent coherence length, Q the complex or-
der parameter normalized by its zero-field value, and I the coordinate along the link ab. 3 (I) is the projection of
the vector potential along the wire and $0 (= ch/2e) the flux quantum. The linearized Ginzburg-Landau equa-
tion5 gives the order parameter in the strand as a function of its values at the nodes:

P(l) = [exp(iy„)/sin(W i ) ] fP, sin(&b —I) +glib exp( —iy,&)sin(i) ], (2)

where W,b is the length of the strand normalized by ( and y,i is 2~/@0 times the circulation of the vector potential
along the link.

Equation (2) allows us to write the free energy as a function of the values of the order parameter at the nodes:

F= sE, X . [(Q,P, +PiiPb)cos(W, i) —[p,pb exp(iy, b)+p,'pi, exp( —iy,i)] } . 0)sin ub

The free energy is thus isomorphic to an electronic tight-binding Hamiltonian and can be diagonalized by solving
the corresponding system of linear equations:

sE, X,[[(/sin(~ )][&,„cos(& ) —P exp( —iy )]}=f„P,„, (4)

where n stands for the eigenstate and the sum is over the nearest neighbors (~) o«given nod«&). Th«hermal
probability p„ takes the usual form:

p„=exp( —F„/ka T)/Z; Z = X„exp( —F„/ka T).
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The (H, T) phase diagram within the mean-field
solution follows from looking at the point at which the
lowest eigenvalue becomes zero. 2 7 Some characteris-
tics of the weak-link arrays deduced from Eqs. (3) and
(4) are as follows:

(1) The mean-field solution at zero field always
gives T, —T,„and corresponds to a constant order
parameter throughout the network (Q, =pi, =. . . =1)
independent of the kind of disorder introduced. This
should imply that the classical percolation characteris-
tics of the network determine the magnetic response,
as assumed in earlier works, '4 " but a more complete
calculation, with the corresponding thermal probabili-
ties instead of the mean-field solution, must consider

the nature of the excited states.
(2) The dead-end links, i.e., those not belonging to

a closed loop, are not affected by the field since the
exponential factor in Eqs. (3) and (4) ean be absorbed
by a change of gauge, and thus tend to push the field-
dependent critical temperature [ T, (H) ] towards T,„,
its value at zero field. 2 5

(3) In agreement with (1) these systems do not have
two characteristic temperatures at zero field, one for
the superconductive transition of the nodes and a
lower one for the onset of a coherent state, as occurs
for arrays of superconductive grains coupled by
Josephson junction. '2 In our weak-link arrays these
transitions happen at once. This property becomes ap-
parent if we rewrite the free energy, Eq. (3), as

sX., [E,g cot(W„)(ly. l'+ le, l') I;,—ly, l lq, leos(P ~ y„—)], (6)

where u (P) is the phase of the order parameter at node a (b) and j,'i, =2E,(/sin(W, i, ) plays the role of critical
current for the links, whose supercurrent is given by

Equation (6) explicitly shows the main difference between these systems and Josephson-coupled superconduc-
tive grains: The nodes are not massive and thus the Josephson part of the free energy of the links [second term on
the right-hand side of Eq. (6)] provides all the condensation energy; the nodes cannot become superconducting by
themselves.

Equations (3) and (4) are, in general, difficult to solve. They become more tractable for simple geometries, like
the lasso2 and the boleadora„5 and for regular networks, like the single ladder6 and the square net. ~ These regular
networks all have links of equal length (L,b = L) and a well defined elementary loop of enclosed area L2 Thus, .
because of the special magnetic field dependence of the free energy [Eqs. (3) and (4)], the (H, T) phase diagram is
periodic with period Ho such that L2HO = $0.

For the square lattice Eq. (4) reads

f st/sin(W) ][z,iII,„cos(X)—X,i',„exp( —iy ) ] =f„P,„,
where the sum is over the nearest neighbors of node
a, whose number is z, . We introduce disorder by re-
moving a fraction q of the nodes at random, i.e. , a
fraction p =1—q of the nodes are present. A link ab
is present only if both nodes, a and b, are present.

At p = 1 we have z, =4 and Eqs. (8) are isomorphic
to the tight-binding equations of an electronic system
in the same geometry and twice the applied field. The
energy spectrum for this problem has a complex mag-
netic field dependence and was first computed by
Hofstadter. '3 The phase diagram of the superconduc-
tive square lattice (at p = 1) is straightforward to ob-
tain7 from it. For rational values of H/Ho, thc eigen-
states are extended. For irrational H/Ho, Eq. (8) cor-
responds to a critical point in the parameter space of
the equivalent 1D incommensurate Hamiltonian stud-
ied by Aubry. '4 This point separates extended from
localized states, and Aubry conjectured that for it the
states are power-law localized. '4

When 1 )p & p, (p, = classical percolation thresh-
old=0. 59) we are on the "metallic" side of the per-
colative transition: There is an infinite cluster in the
sample. The lowest free-energy eigenstate is still ex-

tended (at H=0) and the pcridocity of the phase dia-
gram in H is conserved as a result of the fact that
higher-order loops are integer multiples of the elemen-
tary loop. We analyze two aspects of the (H, Tp)
phase diagram: (a) the (H, T) phase boundary as a
function of p & p, ; and (b) the nature of the excited
states at H =0.

To do this we run a tridiagonalization procedure'~'6
over the free energy obtaining effective one-
dimensional free energy. We analyze it by means of
numerical diagonalization, continued fractions, and
decimation techniques. The "numerical" samples are
lattices of IOOX100 sites and the tridiagonalization is
followed through 512 steps. We study the response of
the "infinite" cluster. Finite clusters are not taken
into account since they play no role in the coherent su-
perconductive transition. We fmd the following:

(a) The (H, Tp) phase boundary looking at the
mean-field solution. The lowest eigenvector is
analyzed by the continued-fraction method and its lo-
calization length obtained. This localization length can
be interpreted as equivalent to the Ginzburg-Landau
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coherence length in a continuous medium, which ap-
pears as the size of the nucleation regions. In the
present case the dead ends act as nucleation centers.

Figure 1 shows the phase boundary for one sample
at three different concentrations (p = 1, 0.9, and 0.7).
On the vertical axis we plot&2= (L/(0)2(1 —t) and
the abscissa is L H/$0. When the disorder increases
the field-dependent critical temperature tends to T,„
and the localization length decreases. The latter also
decreases when the applied field is increased towards
Ho/2. These characteristics correspond to the effects
of the dead-end links and higher-order loops that ap-
pear with increasing disorder.

For H/Ho (0.05 the nucleation field (H, 2)
depends linearly on 1 —t, as is usual for massive super-
conductors; beyond H =0.1HO the structure of the ar-
ray produces a departure from the linear law.

The derivative of H, 2 with respect to T increases
with decreasing p, as can be seen in Fig. 1, and
diverges for p =p, . This has been theoretically
analyzed by means of scaling arguments4 " and it was

proposed that dH, 2/dT- (p —p, ) ", where the criti-
cal exponent k is a function of known critical indices.
According to Ref. 11 its value is k=0.57, whereas
Ref. 4 predicts k =0.87. It should be noticed that H, 2

has different behavior according to whether p is larger
or smaller than p, . As discussed above dH, JdTat T,„
is well defined for p & p„whereas for p (p, one has

H, 2
—(1 —t)' 2 so that k as defined loses sense. In

that case one defines the critical index through
H, 2

—(1 —t)'/2(p, —p) ", where k is now related to
the behavior of the diamagnetic susceptibility X of the
clusters. This follows from the relation H, 2—(1 —t)/X'/2, valid only for finite systems. " In this
region (p & p„region I of Ref. 11) there are numeri-

cal experiments by Bowman and Stroud'7 using an g Y

model which are in rough agreement with the scaling
predictions of Ref. 11. Although these authors use a
different model, one expects the critical indices to be
universal. The constant-amp1itude approximation,
which leads in the present systems to an XY model, is
appropriate to study finite systems for which the nu-
cleation has been found to be uniform for small
fields, 7" but not for large samples where vortex
penetration is present at any field. In the same spirit
we should also mention the results of John and Luben-
sky's for granular superconductors.

We have fitted the linear expression

H, 2L /$0=A (L/$0) (1 —t)

to the initial part of the phase diagram, obtaining A as
a function of p for p & p, . From this we calculate the
critical exponent

Hc2/dT A/0/(o—~Tea = B(p pe) (10)

A log-log plot of A vs p —p, is shown in Fig. 2 for
one of the samples. Repeating this for ten samples we
obtain an average critical index k =0.93 + 0.06, which
is in rough agreement with both the predictions of
Deutscher, Grave, and Alexander4 " and of John and
Lubensky. 's Experimental data, also from Deutscher,
Grave, and Alexander, " give k=0.6+0.05 for inho-
mogeneous InGe films. This discordance could be due
to the three-dimensional nature of the InGe samples.
New experiments, using microlithography techniques,
should provide an experimental test of the theory. We
want to stress once more the importance that these ex-
periments could have, since they would provide a con-
trolled approach to disorder in quantum systems.

(b) Equation (8) could be written in the following
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FIG. 1. Critical field (full line) and localization length (or
range of nucleation) (dotted line) as a function of%2 for the

disordered square lattice at concentrations p =1.0, 0.9, and
0.7.
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FiG. 2. Log-log plot of the initial slope of the critical
field, parameter A in Eq. (9), vs p —p, . The nucleation-field
critical exponent k, Eq. (10), is obtained this way.

2651



VOLUME 56, NUMBER 24 PHYSICAL REVIEW LETTERS 16 JUXE 1986

generalized form at 8= 0:

Several physical situations give systems of equations
similar to Eq. (11),among these tight-binding Hamil-
tonians. The pecularity of the "superconductive type"
of Hamiltonian is that the site energy ( = z, E) is pro-
portional to the number of nearest neighbors. For the
particular case we are interested in, E = 1 ( T = T,„)
and thus the lowest eigenstate corresponds to Q con-
stant throughout the lattice and tv equal to zero. In
contrast with other tight-binding models, '5'6 this
property does not change when disorder is introduced
through removal of sites or bonds. Thus in this model
classical and quantum percolation are coincident. A
similar response to disorder has been found in elastic
media by John, Sompolinsky, and Stephen. '9

Unfortunately the very methods used in Refs. 15
and 16 to study quantum percolation fail to give an
answer about the nature of the excited states. The tri-
diagonalization procedure does not show convergence
of the parameters of the effective Hamiltonian towards
constant values (or periodic repetition), a property
used in Refs. 15 and 16 to estimate the quantum per-
colation threshold. Continued-fraction and decimation
technique analysis of the tridiagonalized Hamiltonian
show that states with energy (tv) near zero extend
over all of the sample, but this is not a conclusive
result: The localization could be larger than the size of
the samples.

Elucidation of the nature of these excited states will

provide a better understanding of quantum percola-
tion. They are also test cases to check numerical
methods. In superconducting networks these excited
states modify the pure geometrical arguments used to
study the critical exponents and the response of these

networks under sizable external currents.
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